Menoufiya University Faculty of Engineering Shebin El-Kom Second Semester Exam. Academic Year: 2014-2015

Department: Basic Science of Engineering Year: $1^{\text {st }}$ year of Civil Engineering Subject/Code: Physics 2 (BES 122) Time Allowed: $\mathbf{3}$ hours
Date: 7/6/2015

Answer the Following Questions:

 Question 1:a) Prove that: "The square of the wave speed (v) on taut string is inversely proportional to (تتاسب عكسياً) the linear density (μ) of the string".
b) Derive the power transfer by a wave along a string
c) A body of mass " $\boldsymbol{m}=\mathbf{2 0 0} \boldsymbol{g}$ " is vibrating in a viscous (لز) medium with a restoring force constant $\boldsymbol{k}=\mathbf{1 2 5} \mathrm{N} / \boldsymbol{m}$ and a damping constant $\boldsymbol{b}=\mathbf{0 . 4} \mathrm{Nm}^{-1} \boldsymbol{s}$. Determine the amplitude of the vibration just after (مباشـرةً بعد) $\mathbf{1 0}$ complete cycles. The amplitude of the undamped oscillator is $A_{0}=\mathbf{5 c m}$.

Question 2:

(18 marks)
a) Describe and explain with drawing "Newton's Rings".
b) If, and only if, the amplitude of the wave is doubled, what will happen to the following quantities? (i) the wave speed (\boldsymbol{v}) (ii) the wave frequency (f)
(iii) the maximum transverse speed $\left(v_{y, \text { max }}\right)$
c) A submarine (غواصة) is moving in the Atlantic Ocean (المحيط الأطلسى) at a depth of about $\mathbf{1} \mathbf{~ k m}$ with a speed of about $\mathbf{1 8} \mathbf{~ k m} / \mathbf{h}$. It produces a sinusoidal sound wave that is described by the displacement wave function:

$$
s(x, t)=(2 \mu m) \cos \left[\left(3.55 m^{-1}\right) x-\left(710 s^{-1}\right) t\right]
$$

Another submarine is moving at the same depth with the same speed. Determine the observed frequency by the $2^{\text {nd }}$ submarine if they $\ldots \ldots$. (i) moving towards each other, (ii) moving away from each other, (iii) running behind each other.

Question 3:

a) Which of the following will cause the fringes in a two-slit interference pattern to move closer (تتقارب)? Explain? (i) increasing the wavelength of the light (ii) increasing the screen distance (iii) decreasing the slit spacing (iv) immersing the entire apparatus in water.
(b) Two waves are defined by the following equations:

$$
y_{1}=A \sin (k x-\omega t) \quad \text { and } \quad y_{2}=A \sin (k x+\omega t)
$$

Define and determine the resultant wave due to the superposition of these two waves. c) A $60-\mathrm{cm}$ guitar string (وتر الجيتار) under a tension of $50 N$ has a mass per unit length of $0.1 \mathrm{~g} / \mathrm{cm}$. What is the highest quantized "or resonant" frequency that can be heard by a person capable of hearing (قادر على سماع) frequencies up to 20000 Hz ?

Question 4:

(18 marks)
a) Describe and explain "Diffraction and interference through a narrow slit"
(b) Write Bragg's law and state its usefulness (أهمية).
c) Assuming that the average diameter of the human eye through a daytime (النیا) is about $\mathbf{2} \mathbf{m m}$. Estimate the limiting angle $\left(\boldsymbol{\theta}_{\min }\right)$ of resolution for the human eye, assuming its resolution is limited only by diffraction. Choose $\lambda=\mathbf{5 0 0} \mathbf{n m}$, near the ; center of the visible spectrum. If the point sources are $\mathbf{2 5} \mathbf{~ c m}$ from the eye (the near point $L=\mathbf{2 5} \mathbf{c m}$), determine the minimum separation distance d between two point sources that the eye can distinguish.

Question 5:
(18 marks)
a) Correct the underlined words of the following statements:
i) According to "Superposition Principle" each portion (جزء) of the slit acts as a source of light waves that interfere and produce bright and dark fringes.
ii) The amplitude of the standing wave is equal to the square of the amplitude of the irdividual superimposed waves.
iii) For an angle of incidence equals θ_{p} (Brewster's angle) the refracted light is; completely polarized.
b) Define optical activity and compare between laevorotatory and dextrorotatory materials.
c) Unpolarized light passes through two polaroids; the axis of one is vertical (رأسی) and that of the other is at $\mathbf{6 0}^{\circ}$ to vertical. What is the intensity of the transmitted light with respect to the original intensity of the unpolarized light?

This exam measures the following ILOs

