Heterosis for Yield Components and Fruit Traits in Tomato under Condition of Fusarium Infection and Biological Control by Antagonistic Bacteria EL- Adl, A. M. M.¹; K. A. Zaied¹; A. H. Abd El Hadi¹; S. M. Farid²; Mervat I. Kamal¹

and Sally E. A. Ibrahim²
¹Genetic Department, Faculty of Agriculture, Mansoura University.

²Hort. Res. Inst., Agric. Res. Center, Giza, Egypt.

ABSTRACT

This study aimed to induce hybrid genotypes resistant to fusarium wilt disease in tomato, as well as using *Bacillus thuringiensis* as a biological control agent against *Fusarium oxysporum*. Four tomato varieties were used in this study to induce $12 F_1$ hybrids and their reciprocal hybrids via diallel crosses. High significant heterosis relative to the mid-parent was obtained with the largest value by $P_1 \times P_2$ for plant height, in addition to significant heterosis was obtained by the reciprocal hybrid for the same trait in fungi and control treatments. The parental variety P_3 had the highest mean values of total yield per plant in the four treatments where the bacterial treatment T_4 gave the highest mean value of total yield per plant in relation to other treatments. The reciprocal hybrid $P_3 \times P_1$ gave the highest mean values in the four treatments for the total weight of fruits per plant which referred to the maternal effect. The hybrid $P_2 \times P_3$ gave highly significant values of heterosis in the four treatments for weight of three early collections and total weight of fruits per plant. The results appeared that Bt treatments enhanced all traits measured in this study especially chemical parameters. This indicated that Bt played a major role in the control of natural infection due to biotic stress. In addition, tomato showed higher heterosis in crosses and reciprocal crosses which depends on the distance between varieties.

Keywords: Heterosis, tomato, Bacillus thuringiensis, Fusarium oxysporum.

INTRODUCTION

Tomato (*Solanum lycopersicum* L.; 2n=24) belongs to Family *Solanaceae*. Tomato is one of the most important vegetable crops all over the world including Egypt. Tomato is a rich source of vitamin A, C and minerals like Ca, P, K and Fe (Dhaliwal *et al.*, 2003).

Tomatoes are major contributors of antioxidants such as carotenoids (especially, lycopene and β -carotene), phenolic, ascorbic acid (vitamin C) and small amounts of vitamin E in daily diets (Rai *et al.*, 2012). Heterosis is a biological phenomenon manifesting itself in hybrids that are more vital, adaptive and productive than their parents. Heterosis has been explained by over-dominance and by additive effects (Bai and Lindhout, 2007).

Fusarium causes vascular wilt of vegetables, flowers, ornamentals and other important crops. Different host plants are attacked by special forms or races of *F. oxysporum*. The disease caused by this fungus is characterized as a wilted plants, yellowed leaves and minimal/reduced or even total loss/absent crop yield (Pataki *et al.*, 2000). In order to product hybrids that are carriers of resistance gene it is necessary to test reaction of existing material to the pathogen and establish the potential of existing genotypes that can be used in agriculture. Biological control offers an important alternative to synthetic chemicals. The use of bacteria as *Bacillus sp.*, have been investigated because of their properties to produce antifungal metabolites and protect plants from fungal infection (Nourozian *et al.*, 2006).

This study amied to investigate the inheritance of resistance for Fusarium wilt disease in tomato, as well as, using *Bacillus thuringiensis* as a biological control agent against *Fusarium* wilt to enhancing the growth and yield traits of tomato.

MATERIALS AND METHODS

Genetic materials

Four tomato varieties belong to species Lycopersicon esculentum Mill were used. These parental varieties were Fatma (P₁), Castel rock (P₂), Tigerella (P₃) and Marglop (P₄). The seeds of these parental varieties were kindly provided from Vegetable Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt. Bacterial strain used in this study was *Bacillus thuringiensis* which kindly provided from Bacillus Genetic Stock Center, Biochemistry Dept., Ohio University, Columbus, USA. This strain was maintained on TGY medium as a complete medium according to Mazza *et al.*, (1992). *Fusarium oxypourm f.* used in this study was obtained from Plant Protection Research Institute, Agriculture Research Center, Egypt. PDA medium was used as a complete medium for growing and maintained *Fusarium oxyspourm* according to Leslie and Summerell (2006).

CHECKED

Experimental design

The four parental varieties and their F₁, F_{1r} hybrids were arranged in Randomize Complete Blocks Design with three replicates. The seedlings were transplanted to the pots after 45 days from sowing. Soil in pots consists of land soil and sand 1:1 without any source of fertilization. The plants were treated with Fusarium oxyspourm three times weakly after two weeks from transplanting. Plants were three weeks inoculated weakly with bacterial suspension (10⁹ cells/ml) at the time of flowering for four times with the rate of 5 ml/plant. Treatments inoculated: control plants without any inoculation by fungi or bacteria T₁, plants treated with Fusarium oxyspourm T₂, plants treated with Bt + Fusarium T_3 , plants treated with Bt T_4 . Pots preparation, fertilization and other practices were carried out according to the recommendations of the Egyptian Ministry of Agriculture. Data were recorded from randomly chosen plants of three replications using the following traits; plant height, number of fruits per plant for the first three pickings, weight of fruits per plant of the first three pickings, total number of fruits per plant, total weight of fruits per plant, ascorbic acid content according to Sadasivam and Balasubraminan (1987). The estimation of total phenols was measured according to Bary and Thorpe (1954).

Statistical analysis

Data were collected on P_1 , P_2 , F_1 and F_{1r} hybrids for yield components and other biochemical traits were subjected to statistical analysis of Randomed Complete Blocks Design as outline by Steel and Torrie (1960).

Heterosis is the percentage increase of the F₁ hybrid in relation to the mid - parent according to Singh and Chaudary (1985) as follows;

$$H\% = \underbrace{F_1 - M.P}_{M.P} \times 100$$

$$F_1 = \underbrace{\sum F_1 ...}_{P (P-1)} \qquad \text{for all hybrids} \qquad \text{and}$$

$$As \quad \underbrace{\sum F_1 i...}_{P (P-1)/2} \qquad \text{for } F_1 \text{ or } F_{1r} \text{ reciprocals.}$$

RESULTS AND DISCUSSION

The mean performance of parental varieties and their F_1 hybrids for plant height, ascorbic acid and phenol compound in the four treatments are presented in Table 1. The results indicated that genotypes showed highly significant differences to all treatments. Plant height showed that the parental genotype Fatma (P_1) was higher than Castel rock (P_2) in control T_1 and fungi treatment T_2 . Parent Fatma (P_1) gave high value in fungi treatment than control which proved the resistance of this variety to Fusarium wilt. The parental variety Fatma (P_1) had highest mean values in control T_1 and in fungi and bacterial treatment T_3 . The parental variety Castel rock (P_2) had highest mean value in fungi treatment T_2 and in bacterial treatment T_4 and it had the highest mean value, for ascorbic acid trait. For phenol compound the parental variety Fatma

(P₁) had the lowest mean values in the four treatments which indicate that, the parental variety Fatma (P₁) was resistant to Fusarim wilt and bacteria also reduce the infection of disease. The F_1 hybrid $P_1 \times P_2$ had highest mean value in control T₁ and in fungi treatment T₂ and it was higher than F_{1r} hybrid over the two treatments for plant height. The F_1 hybrid $P_1 \times P_2$ had highest mean values in the four treatments for ascorbic acid. Phenolic compounds showed that, F₁ hybrid P₁×P₂ had a lowest mean value in fungi treatment T₂ and in fungi and bacterial treatment T₃, but the F_{1r} reciprocal hybrid $P_2 \times P_1$ had lowest mean values in control T₁ and in bacterial treatment T₄. The results showed highly significant heterosis relative to the midparent for plant height, with a largest value was 32.8% for P₁ x P₂ in control, while heterosis for the reciprocal hybrid was also significant in control T_1 and fungi treatment T_2 . The F_1 hybrid of $P_1 \times P_2$ had highly significant values for ascorbic acid in the four treatments. On the other hand, phenol compound was not significant in control T₁ for F₁ and their F_{1r} , but the F_1 hybrid of $(P_1 \times P_2)$ had negative significant values -30.3% in fungi treatment T₂ and -54.9% in fungi and bacteria treatment T₃ . while, the reciprocal hybrid of P₂×P₁ had highly significant of -49.6% in T₄ bacterial treatment. The results presented in Table 2 appeared that the parental varitey Fatma (P₁) was the best parent in control T_1 for plant height and ascorbic.

Table 1. Themean performance of parental varieties P₁, P₂ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

Traits & Trea	at.	Plant hei	ght (cm)			Ascort	oic acid			Phenol co	mpound	s
Geno & Hetro	osis T ₁	T ₂	T ₃	T ₄	T_1	T ₂	Т3	T ₄	T_1	T ₂	T ₃	T_4
$\overline{P_1}$	46.3	58	-	-	17	14.6	17.3	21.3	0.226	0.613	0.203	0.346
P_2	41	43	-	-	16.1	14.8	16.3	21.6	0.261	0.753	0.566	0.433
M.P	43.6	50.5	-	-	16.5	14.7	16.8	21.3	0.243	0.683	0.384	0.389
F_1	58	55.3	-	-	18.6	16.5	19.3	26	0.341	0.476	0.173	0.226
F_1 -M.P	14.4	4.8	-	-	2.1	1.8	2.5	4.7	0.098	-0.207	-0.211	-0.163
H ₁ %	32.8	9.50	-	-	12.7**	12.2**	15.3**	21.2**	40.3	-30.3**	-54.9**	-41.9 ^{**}
F_{1r}	53.6	56.6	-	-	18.1	15.4	17.8	23.6	0.293	0.791	0.336	0.196
F_{1r} -M.P	10	6.1	-	-	1.6	0.7	1	2.3	0.05	0.108	-0.048	-0.193
H_r %	22.7*	12.1*	-	-	9.69**	4.76	5.95	10.7^{**}	20.5^*	15.8**	12.5*	-49.6**
L.S.D	0.05	10	.9			1.	16			0.0)43	
	0.01	14	.5			1.	52			0.0)57	
F_1 - F_{1r}	4.4	-1.3	-	-	0.5	1.1	1.5*	2.4**	0.048	-0.315**	-0.163**	0.03
L.S.D	0.05	12					33)51	
L.S.D	0.01	16	.7			1.	75			0.0)66	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

 P_1 : Fatma P_2 : Castel rock $H_1\%$: Heterosis and $H_r\%$: Reciprocal heterosis.

Table 2. The mean performance of parental varieties P₁, P₃ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

Traits &Treat.		Plant heig	ght (cm)			Ascort	oic acid			Phenol co	mpound	s
Geno.& Heterosis	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
$\overline{P_1}$	46.3	58	-	-	17	14.6	17.3	21.3	0.226	0.613	0.203	0.346
P_3	40.3	60.3	-	-	15	13.3	14.6	16.3	0.223	0.22	0.253	0.22
M.P	43.3	59.1	-	-	16	13.9	15.9	18.8	0.224	0.416	0.228	0.283
F_1	57.3	65.3	-	-	17.7	15.2	17.6	22.3	0.266	0.343	0.24	0.21
F_1 -M.P	14	6.2	-	-	1.7	1.25	1.7	3.5	0.042	-0.073	0.012	-0.073
H ₁ %	32.3* 10.3				10.6**	8.99*	10.6	18.6**	18.7	-17.5**	5.26	-25.8**
F_{1r}	47.6 40				20.5	19.6	20	22	0.27	0.196	0.12	0.183
F_{1r} -M.P	4.3	19.1	-	-	4.5	5.7	4.1	3.2	0.046	-0.22	-0.108	-0.1
H _r %	9.93	-32.2**	-	-	28.1**	40.6**	25.7**	$17^{\frac{1}{*}}$	19.1*	52.8**	-47.3**	-35.3**
L.S.D 0.05		10.	9			1.	16			0.0		
0.01		14.	.5			1.	52			0.0)57	
F_1 - F_{1r}	9.7	25.3**	-	-	-2.8**	-4.4**	-2.4**	0.3	-0.004	0.147**	0.12**	0.027
L.S.D 0.05	•	12.	.5			1.	33			0.0)51	
0.01		16.	.7			1.	75			0.0)66	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacteria treatment.

P₁: Fatma P₃: Tigerella H₁%: Heterosis and H₂%: Reciprocal heterosis.

For phenol compound the parental variety Trigella (P₃) had the lowest mean values in the four treatments which reverse the resistance of the same parent. The F₁ hybrid $P_1 \times P_3$ was better than its F_{1r} $P_3 \times P_1$ in the two treatments for plant height. The reciprocal hybrid (F_{1r}) $P_3 \times P_1$ had the highest mean values in T_1 , T_2 and for ascorbic acid. For phenol compound, the lowest mean value showed with F_{1r} reciprocal hybrid $P_3 \times P_1$ in fungi treatment T₂. The F₁ hybrid between P₁×P₃ showed a low and significant values in control T₁ and in fungi treatment T₂ for plant height. For ascorbic acid heterosis of the reciprocal hybrid P₃×P₁ showed significant values in control T₁, fungi treatment T₂ and fungi and bacterial treatment T₃. The hybrid P₁×P₃ showed significant value (18.6%) for ascorbic acid in bacterial treatment T₄. Phenol compound was not significant in control T₁ and fungi and bacterial treatment T_3 in both of F_1 & F_{1r} hybrids. The reciprocal hybrid $P_3 \times P_1$ showed highly significant values of phenolic compounds in fungi treatment T₂ and in bacterial treatment T₄.

The results presented in Table 3 showed that parental variety Fatma (P_1) recorded the highest mean

values of the two treatments for plant height. The parental variety Fatma (P1) had the highest mean values in control T₁, fungi treatment T₂ and bacterial treatment T₄ but the parental variety Marlob (P4) had highest mean value in fungi and bacterial treatment T₃ for ascorbic acid. The parental variety Marglob (P₄) had the lowest mean values in four treatments for phenolic compounds which reverse to the resistance of Fusarium wilt. The F_{1r} reciprocal hybrid P₄×P₁ had highest mean value in the two treatments for plant height. The results indicated the role of bacteria against fusarium wilt, as well as, phenolic compounds which helping the plants to overcome fungal infection. The results showed the presence of high and positive heterosis for F₁ reciprocal versus mid-parent under the two treatments for plant height. The F_{1r} reciprocal hybrid P₄×P₁ had significant values in both of fungi and bacterial T₃ and bacterial treatment T_4 , while the hybrid $P_1 \times P_4$ had highly significant values in control T₁ and fungi treatment T₂ for ascorbic acid. Heterosis of phenolic compounds was highly significant in bacterial treatment T₄.

Table 3. The mean performance of parental varieties P₁, P₄ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

Traits& Treat.		Plant hei	ght (cm)			Ascorb	ic acid			Phenol co	mpound	S
Geno.& Heterosis	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
P_1	46.3	58	-	-	17	14.6	17.3	21.3	0.226	0.613	0.203	0.346
P_4	34	27.6	-	-	16.1	12.6	17.5	19.8	0.176	0.161	0.113	0.156
M.P	40.1	42.8	-	-	16.5	13.6	17.4	20.5	0.314	0.387	0.158	0.251
F_1	50.8	40	-	-	18.1	15.6	17.8	21.8	0.284	0.443	0.29	0.17
F ₁ -M.P	10.7	-2.8	-	-	1.6	2	0.4	1.3	-0.031	0.056	0.132	0.081
H ₁ %	26.6	6.54-	-	-	9.69**	14.7**	2.29	6.34^{*}	-9.56	14.4*	83.5**	-32.3**
F_{1r}	51.6	60.3	-	-	17.1	15.5	18	22	0.283	0.72	0.613	0.213
F_{1r} -M.P	11.5	17.5	-	-	0.6	1.9	0.6	1.5	-0.031	0.333	0.455	-0.038
H _r %	28.5	40.8**	-	-	3.63	13.9**	3.44	7.31	-9.87	86**	100**	-15.1
L.S.D 0.05		10	.9			1.1	16			0.0)43	
0.01		14	.5			1.:	52			0.0)57	
F_1 - F_{1r}	-0.8	-20.3**	-	-	1	0.1	-0.2	-0.2	0.001	-0.277**	-0.323**	-0.043
L.S.D 0.05		12	.5			1.3	33			0.0)51	
0.01		16	.7			1.1	75			0.0	066	

 $\overline{T_1}$: Control; $\overline{T_2}$: Fungi treatment; $\overline{T_3}$: Fungi and bacteria treatment and $\overline{T_4}$: Bacterial treatment.

P₁: Fatma, P₄: Marglob H₁%: Heterosis and H_r%: Reciprocal heterosis.

The parental variety Castel rock (P2) recorded highest mean value of plant height in control compared with Tigerella (P₃) in Table 4. The parental variety Castel rock (P2) had highest mean values of ascorbic acid in all treatments which appeared the best value was 21.6 mg in bacterial treatment T₄. The parental variety Tigerella (P₃) was resistant to fusarium wilt disease which do not leading plant genotype to produce highest mean values of phenolic compounds. The F_{1r} hybrid P₃×P₂ recorded the highest mean value of plant height 61.3cm in control T₁ while, F₁ hybrid P₂×P₃ showed highest mean value of 49.6 cm in fungi treatment T_2 . For ascorbic acid the F_1 hybrid $P_2 \times P_3$ showed highest mean values in T1, T3 and T4 but the F1r reciprocal hybrid P3×P2 had highest mean value in fungi treatment T2, however, the best value was in bacterial treatment T₄. The F₁ hybrid P₂×P₃ had lowest mean values of phenolic compounds (0.22 mg) in fungi treatment T₂ and in bacterial treatment T₄ but the F_{1r} reciprocal hybrid $P_3 \times P_2$ had lowest value in control T_1 in fungi and bacterial treatment T_3 . Heterosis for the F_{1r} hybrid $P_3 \times P_2$ was significant in control treatment for plant height. The F₁ hybrid P₂× P₃ showed highly and significant values of ascorbic acid in four treatments and the reciprocal hybrid $P_3 \times P_2$ showed highly significant values in four treatments also. The hybrid $P_2 \times P_3$ had negative significant heterosis (-54.7%) for phenolic compounds in fungi treatment T_2 but the F_{1r} reciprocal hybrid $P_3 \times P_2$ showed negative and highly significant heterosis -48.5% and -47.9% in fungi treatment and fungi and bacterial treatment T_3 , respectively.

The results in Table 5 showed that the parental variety Castel rock (P_2) showed the best results in the two treatments if compared with the parental variety Marglop (P_4) for plant hight. The parental variety Castel rock (P_2) showed the highest mean values in the four treatments versus the parental variety Marglob (P_4) for ascorbic acid. The parental variety Marglob (P_4) had highest mean values in the four treatments versus the parental variety Castel rock (P_2) and the best value was in bacterial treatment (T_4) for phenolic compounds. The lowest mean value of phenolic compounds was the best which showen in the parental variety (P_4) .

The F_{1r} reciprocal hybrid $P_4 \times P_2$ recorded the best mean values for plant height over the two treatments which showed the maternal effect in hybridization. The results

showed the F_1 hybrid $P_2 \times P_4$ had high mean values of ascorbic acid in fungi treatment T_2 (17.6 mg) and in bacterial treatment T_4 (22mg) while, the F_{1r} reciprocal hybrid $P_4 \times P_2$ showed the highest mean values in control T_1 (19.3 mg) and in fungi and bacterial treatment (18.6 mg) T_3 . The results showed the F_1 hybrid $P_2 \times P_4$ had the lowest mean value for phenolic compounds. The heterosis of plant height in reciprocal hybrid versus the mid-parent for $P_4 \times P_2$ was significant in the two treatments. The F_{1r} reciprocal hybrid $P_4 \times P_2$ showed significant content of ascorbic acid in

control T_1 and in fungi and bacterial treatment T_3 , but the hybrid $P_2 \times P_4$ showed highly significant value in fungi treatment T_2 and in bacterial treatment T_4 . Heterosis of phenolic compounds was significant in control T_1 among both F_1 and their F_{1r} . In addition, the hybrid of $P_2 \times P_4$ showed significant heterosis percent for phenolic compounds in fungi treatment T_2 , in fungi and bacterial treatment T_3 and in bacterial treatment T_4 .

Table 4. The mean performance of parental varieties P₂, P₃ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

	CHCHIC	ii ti aits u		tttiitti.	101							
Traits & Treat.		Plant heigh	ght (cm)			Ascort	oic acid			Phenol co	mpounds	3
Geno.& Heterosis	T_1	T ₂	T ₃	T ₄	T_1	T ₂	T ₃	T ₄	T_1	T ₂	T ₃	T ₄
$\overline{P_2}$	41	43	-	-	16.1	14.8	16.3	21.6	0.26	0.753	0.566	0.433
P_3	40.3	60.3	-	-	15	13.3	14.6	16.3	0.223	0.22	0.253	0.22
M.P	40.6	51.6	-	-	15.5	14.1	15.4	18.9	0.241	0.486	0.409	0.326
F_1	55.3	49.6	-	-	19.3	16	20.1	22.3	0.29	0.22	0.22	0.166
F_1 -M.P	14.7 -2				3.8	1.9	4.7	3.4	0.049	-0.266	-0.189	-0.16
H ₁ %	36.1** -3.96				24.5**	13.5**	30.5**	18.6**	20.3**	-54.7**	-46.2**	-49**
F_{1r}	36.1** -3.96 61.3 40				18.6	17.7	20	22	0.27	0.25	0.213	0.316
F_{1r} -M.P	20.7	-11.6	-	-	3.1	3.6	4.6	3.1	0.029	-0.236	-0.196	-0.01
Hr %	50.4	-22.5 [*]	-	-	20**	25.5**	29.8**	17**	12.5	-48.5	-47.9 ^{**}	-3.06
L.S.D 0.05		10.	9			1.	16			0.0)43	
0.01		14.	5			1.	52			0.0)57	
$\overline{F_1-F_{1r}}$	-6	9.6	-	-	0.7	-1.7 [*]	0.1	0.3	0.02	-0.03	0.007	-0.15**
L.S.D 0.05		12.	5			1.	33			0.0)51	
0.01		16.	7			1.	75			0.0)66	

T₁: Control, T₂: Fungi treatment, T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

P₂: Castel rock P₃: Tigerella H₁%: Heterosis H_r%: Reciprocal heterosis.

Table 5. The mean performance of parental varieties P₂, P₄ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

Traits & Treat.		plant hei	ight (cm)			Ascorb	oic acid			Phenol co	mpounds	5
Geno.& Hetero	sis T ₁	T ₂	T ₃	T ₄	T_1	T ₂	T ₃	T ₄	T_1	T ₂	T ₃	T ₄
$\overline{P_2}$	41	43	-	-	16.1	14.8	16.3	21.6	0.26	0.753	0.566	0.433
P_4	34	27.5	-	-	16.1	12.6	17.5	19.8	0.176	0.161	0.113	0.156
M.P	37.5	35.3	-	-	16.1	13.7	16.9	20.7	0.218	0.457	0.339	0.294
F_1	54	48	-	-	18.8	17.6	18.1	22	0.286	0.266	0.196	0.186
F1-M.P	16.5	12.7	-	-	2.7	3.9	1.2	1.3	0.068	-0.191	-0.143	-0.108
$H_1\%$	43.7	35.6°	-	-	16.7**	28.4**	7.10	6.28°	31.2**	-41.8**	-42.2**	-36.7**
F_{1r}	58.6	48.6	-	-	19.3	15.6	18.6	21.8	0.326	0.616	0.4	0.293
Flr-M.P	21.1	13.3	-	-	3.2	1.9	1.7	1.1	0.108	0.159	0.061	-0.001
Hr %	56.2**	37.6 [*]	-	-	19.8**	13.8**	10.1**	5.31	49.5**	34.8**	17.9^{**}	-0.34
L.S.D 0.05		10).9			1.	16			0.0)43	
0.01		14	1.5			1.:	52			0.0)57	
F_1 - F_{1r}	-4.6	-0.6	-	-	-0.5	2**	-0.5	0.2	-0.04	-0.35**	-0.204**	-0.107**
L.S.D 0.05		12	2.5			1	33			0.0		
0.01		16	5.7			1.	75			0.0	066	

T₁: Control, T₂: Fungi treatment, T₃: Fungi and bacteria treatment and T₄: Bacterial treatment. P₂: Castel rock P₄: Marglob H₁%: Heterosis H_r%: Reciprocal heterosis.

The results summarized in Table 6 showed superiority of the parental variety Tigerella (P₃) over the parental variety Marglop (P4) for plant height under the two treatments. Parental variety Marglob (P4) had high mean values of ascorbic acid in control T1, in fungi and bacterial treatment T₃ and in bacterial treatment T₄, but parental variety Tigerella (P₃) had high mean value in fungi treatment T2. The parental variety Marglob (P4) showed the lowest mean values in all the four treatments for phenolic compounds and the lowest value was shown in bacterial treatment T₄ which proved the role of bacteria to protect plant from wilt disease. The F₁ hybrid P₃×P₄ showed high mean value of plant height in control T₁, followed by fungi treatment T_2 . On the other hand, the F_1 hybrid $P_3 \times P_4$ gave highest mean values of ascorbic acid in the four treatments and the best value was in bacterial treatment T₄. The F₁hybrid P₃× P₄ showed the lowest mean values of ascorbic acid in fungi treatment T_2 and in fungi and bacterial treatment T_3 , while the reciprocal hybrid $P_4 \times P_3$ showed lowest mean values in control T_1 and in bacterial treatment T_4 . Heterosis of plant height versus mid-parent for the hybrid $P_3 \times P_4$ was highly significant in control T_1 , while in F_1 and F_{1r} had non significant in fungi treatment T_2 . The reciprocal hybrid $P_4 \times P_3$ showed highly significant values in the four treatments for phenol compounds. On the other hand, the hybrid $P_3 \times P_4$ gave highest values in the four treatments for ascorbic acid.

Similar results were obtained by Sunil *et al.*, (2013), Singhi and ASati (2011), Biswas *et al.*, (2012), Manojkumar *etal.*, (2016) and Kansouh and Zakher (2011), they found highly significant differences among tomato genotypes for plant height, ascorbic acid, phenolic compounds and fruit yield per plant. The results obtained in Table 7 showed that the parental variety Castel rock (P₂)

had the best mean values in the four treatments for NF3P and TNF versus parental variety Fatma (P₁). While,

parental variety Fatma (P₁) had the best mean values in the four treatments for WF3P.

Table 6. The mean performance of parental varieties P₃, P₄ and their hybrids and heterosis for plant height and some of chemical traits under treatments.

Traits & Treat			Plant ho	eight (cm)			Ascorb	oic acid			Phenol co	mpound	S
Geno.& Heter	osis	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
$\overline{P_3}$		40.3	60.3	-	-	15	13.3	14.6	16.3	0.223	0.22	0.253	0.22
P_4		34	27.6	-	-	16.1	12.6	17.5	19.8	0.176	0.161	0.113	0.156
M.P		37.1	43.9	-	-	15.5	12.9	16	18.1	0.199	0.19	0.183	0.188
F_1		53.3	45.6	-	-	19.5	15.2	18.5	23.3	0.5	0.343	0.213	0.206
F_1 -M.P		15.1 5.07				4	2.3	2.5	5.2	0.301	0.153	0.03	0.018
H ₁ %		43.4** 3.87*			-	25.8**	17.8**	15.6**	29.4**	151**	80.5**	16.3	9.57
F_{1r}		42.6 49.3			-	17.3	15	17.6	23	0.293	0.45	0.24	0.133
F_{1r} -M.P		5.5	5.4			1.8	2.1	1.6	4.9	0.094	0.26	0.057	-0.055
Hr %		14.8	12.3	-	-	11.6**	16.2**	10*	27.1**	47.2**	136**	31.1**	-29.2*
L.S.D 0.05			1	0.9			1.	16			0.0	43	
0.01			1	4.5			1.:	52			0.0	57	
F_1 - F_{1r}		10.7	-3.7	-	-	2.2**	0.2	0.9	0.3	0.207**	-0.107**	-0.027	0.073**
L.S.D 0.05			1	2.5			1	33			0.0	51	
L.S.D 0.01			1	6.7			1.	75			0.0	66	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacteria treatment

P₃: Tigerella P₄: Marglob H₁%: Heterosis and H_r%: Reciprocal heterosis.

The results showed that the bacterial treatment was the best in relation to the other treatments of the F_{1r} reciprocal hybrid $P_2 \times P_1$ which had high mean values of yield components in the four treatments and the best value was shown in bacterial treatment T_4 for NF3P, while the F_1 hybrid $P_1 \times P_2$ had the highest mean values in the four treatments for TNF. On the other hand, the F_{1r} reciprocal hybrid $P_2 \times P_1$ showed highest mean values of yield in control T_1 , in fungi and bacterial treatment T_3 and bacteria

treatment T_4 . The F_{1r} reciprocal hybrid $P_2 \times P_1$ showed the highest mean values in the four treatments for TWF. The F_{1r} reciprocal hybrid $P_2 \times P_1$ showed significant heterotic values in the four treatments for NF3P. In addition, TNF had highly and significant in the reciprocal hybrid if compared with the hybrid of $P_1 \times P_2$ in the four treatments. High significant heterosis of yield was shown in the four treatments for the reciprocal hybrid $P_2 \times P_1$ if compared with hybrid $P_1 \times P_2$ for TWF.

Table 7. The mean performance of parental varieties P₁, P₂ and their hybrids and heterosis under the four treatments for yield component traits.

Traits& Treat		N	F3P			W	F3P			TN	F			TV	WF	
Geno.& Heterosis	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T ₄
$\overline{P_1}$	26.6	22	30.3	34	0.323	0.255	0.355	0.426	75.6	60	87.6	103	1.02	0.891	1.12	1.25
P_2	37.3	30.6	42	48.6	0.312	0.245	0.34	0.353	81.3	68.6	97.6	114	1.06	0.826	1.15	1.51
M.P	31.9	26.3	36.1	41.3	0.317	0.235	0.347	0.389	78.4	64.3	92.6	108	1.04	0.858	1.13	1.38
F_1	37.7	30.6	45	51.6	0.507	0.465	0.529	0.601	119.3	91	135	165	1.68	1.53	1.76	1.92
F_1 -M.P	5.8					0.23	0.182	0.212	40.9	26.7	42.4	57	0.64	0.672	0.63	0.54
$H_1\%$	18.2**	18.2**16.3** 24.6** 24.9**				86	52.4	56.8	52.2**	41.5**	45.7**	52.7**	61.5	78.3 [*]	55.7*	39.1*
F_{1r}	43	43 33.6 45.6 55.6				0.395	0.568	0.633	109.6	83.3	121.3	158	1.80	1.62	1.90	2.10
F_{1r} -M.P	11.1	7.3	9.5	14.3	0.211	0.16	0.221	0.244	31.2	19	28.7	50	0.76	0.762	0.77	0.72
H_r %	34.7**	27.7**	26.3**	34.6**	66.5	43.6	63.6	62.7	39.8**	29.5**	30.9**	46.2**	73.1*	88.8*	68.1	52.2*
L.S.D 0.05		2	.12			2.	.51			4.6	59			0.0	098	
0.01		2	.79			3.	.28			6.1	.6			1.	.28	
F_1 - F_{1r}	-5.3**	5.3** -3* -0.6 -4**				0.07	-0.039	-0.032	9.7**	7.7**	13.7**	7*	-0.12*	-0.09	-0.14	-0.18**
L.S.D 0.05			.45				.89			5.4	12				113	
L.S.D 0.01		3	.22			3.	.79			7.1	.1			0.1	148	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

 $P_1\!\!:$ Fatma $P_2\!\!:$ Castel rock $\,H_1\%\!\!:$ Heterosis and $H_r\%\!\!:$ Reciprocal heterosis.

NF3P: Number for fruits of the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

The reciprocal hybrid $(P_2 \times P_1)$ showed highly significant heterotic percent in the four treatments for TWF. The results presented in Table 8 showed that the parental variety Tigerella (P_3) had the highest mean value in the four treatments for number of fruits to the first three pickings NF3P and total number of fruits. While, the parental variety Fatma (P_1) had highest mean values in control T_1 (0.322 kg) and in bacterial treatment T_4 (0.411 kg) versus the parental variety Tigerella (P_3) which had the highest mean values in fungi treatment T_2 (0.287 kg) and in fungi and bacteria treatment T_3 (0.360 kg) for weight of fruits in the first three pickings. Furthermore, the parental variety Tigerella (P_3) had the highest mean values of yield in the four treatments, where bacterial treatment T_4 gave the highest mean value of total yield. The F_1 hybrid $P_1 \times P_3$

had the highest mean values of yield in control T_1 , fungi treatment T_2 and fungi and bacterial treatment T_3 . However, the F_{1r} reciprocal hybrid $P_3 \times P_1$ had the highest mean value of yield in bacterial treatment T_4 for NF3P. The F_{1r} reciprocal hybrid $P_3 \times P_1$ showed the highest value in the four treatments for TNF. On the other hand, the F_1 hybrid $P_1 \times P_3$ gave the highest mean values for weight of fruits in fungi treatment T_2 and bacterial treatment T_4 . In addition, the F_{1r} reciprocal hybrid $P_3 \times P_1$ showed the highest mean values of fruits weight in control T_1 and fungi and bacterial treatment T_3

The F_{1r} reciprocal hybrid $P_3 \times P_1$ gave the highest mean value in all treatments for TWF and the best value was shown in bacterial treatment T_4 which revered to bacteria enhancing the growth of plants. The F_1 hybrid

 $P_1 \times P_3$ gave the highest heteroic values for early number of yield in control T_1 (36.4%), fungi treatment T_2 (27.9%), in fungi and bacteria treatment T_3 (27.8 %) and bacteria treatment T_4 (39.1%). But, total number of yield the reciprocal hybrid of $P_3 \times P_1$ gave the highest and significant values in the four treatments. The reciprocal hybrid of $P_3 \times P_1$ gave highly significant values in all treatments for total weight of yield.

The results presented in Table (9) showed that the parental variety (P_1) among all treatments showed early and total number of fruits and total weight of fruits of traits where the best value gave by bacterial treatments T_4 . The

 F_{1r} reciprocal hybrid $P_4 \times P_1$ had high value for early number of fruits in control T_1 , fungi and bacterial treatment T_3 and in bacterial treatment T_4 , but the F_1 hybrid $P_1 \times P_4$ gave highest mean value in fungi treatment T_2 . The results showed that the F_1 hybrid $P_1 \times P_4$ had the highest mean values in all treatments for early weight of fruits, total number of fruits and total weight of fruits. Highly significant heterosis values were obtained by the reciprocal hybrid $P_4 \times P_1$ in treatments for early number of fruits while, the F_1 hybrid $P_1 \times P_4$ had high significant value in all total number of fruits and total weight of fruits.

Table 8. The mean performance of parental varieties P₁, P₃ and their hybrids and heterosis under the four treatments for yield component traits.

ticatii	icits io	1 yıcı	u com	ponch	t ti ait	.J•										
Traits& Treat.		N1	F3P			V	VF3P			TN	F			TV	/F	
Geno.& Heterosis	T_1	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
P_1	26.6	22	30.3	34	0.323	0.255	0.355	0.426	75.6	60	87.6	103	1.02	0.891	1.12	1.25
P_3	30.6	26	36	41.6	0.322	0.287	0.360	0.411	79.3	63	91.6	104	1.15	1.02	1.29	1.43
M.P	28.6	24	33.1	37.5	0.322	0.271	0.357	0.418	77.4	61.5	89.6	103.5	1.08	0.955	1.20	1.34
F_1	39	30.7	42.4	52.6	0.512	0.440	0.543	0.633	87	70	100	121	1.66	1.41	1.71	1.87
F_1 -M.P	10.4	6.7	9.3	15.1	0.19	0.169	0.186	0.215	9.6	8.5	10.4	17.5	0.58	0.455	0.51	0.53
H ₁ %	36.4**	27.9	[*] 28.1	39.1**	59	62.4	52.1	51.4	12.4**	13.8**	11.6**	8.73**	53.7**	47.6**	42.5**	39.5**
F_{1r}	37.6	30.6	42.3	53.3	0.517	0.429	0.57	0.611	92	76	112	137	1.91	1.73	2.02	2.15
F_{1r} -M.P	9	6.6	9.2	15.8	0.195	0.729	0.213	0.193	14.6	14.5	22.4	33.5	0.83	0.775	0.82	0.81
H _r %	31.5**	27.5	*27.8**	41**	19.5	58.3	59.6	46.1	18.9^{**}	23.5^{**}	25**	33**	76.8**	81.1**	68.3**	60.4**
L.S.D 0.05		2	.12				2.51			4.6	9			0.0	98	
L.S.D 0.01		2.	.79				3.28			6.1	6			0.1	28	
$\overline{F_1}$ - $\overline{F_{1r}}$	1.4	0.1	0.1	-0.7	-0.005	0.011	-0.027	0.022	-5 -6 [*]	-12°	-	16**	-0.25**	-0.32**	-0.31*	-0.28**
L.S.D 0.05		2.	.45				2.89			5.4	2			0.1	13	
L.S.D 0.01		3.	.22				3.79			7.1	1			0.1	48	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

P₁: Fatma P₃: Tigerella H₁%: Heterosis and H_r%: Reciprocal heterosis.

NF3P: Number of fruits for the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

Table 9. The mean performance of parental varieties P₁, P₄ and their hybrids and heterosis under the four treatments for yield component traits.

Traits& Treat.		Ň	F3P			WF	3P			TN	IF .			TW	F	
Geno.& Heterosis	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4
P_1	26.6	22	30.3	34	0.323	0.255	0.355	0.426	75.6	60	87.6	103	1.02	0.891	1.12	1.25
P_4	24	16.6	28	32.6	0.282	0.22			70	52.6		96	0.836	0.662	0.895	0.998
M.P	25.3	19.3	29.2	33.3	0.302	0.237	0.334	0.388	72.8	56.3	85.8	99.5	1.34	0.776	1.007	1.12
F_1	38	30.4	42.3	51.3	0.597	0.542	0.624	0.697	102	81	126	151	1.72	1.56	1.86	1.98
F_1 -M.P	12.7	11.1	13.1	18	0.295	0.305	0.29	0.309					0.38	0.784	0.853	0.86
H ₁ %	50.2	57.5**	45.3	54	97.6	128	86.8	79.6	40.1	43.8**	46.8	51.7**	85.3°	101	88	76.7
\dot{F}_{1r}	39	30.3	46.3	51.4	0.531	0.358	0.551	0.612	100	78.6	122	145	1.52	1.17	1.59	1.72
$F_{1r}^{"}$ -M.P	13.7	11	17.1	18.1	0.229	0.121	0.217				36.2		0.18	0.394		
Hr %	54.1	56.9**	59.1 ^{**}	54.3	75.8	51.1	64.9	57.7	37.3	39.6**	42.2**	45.7**	63.7	50.8	60.7**	53.5**
I C D 0.05		2.	.12			2.5	1			4.6	59			0.09	8	
L.S.D 0.03		2.	.79			3.2	8			6.1	16			0.12	8	
F_1 - F_{1r}	-1	0.1	-4	-0.1	0.066	0.184	0.073	0.085	2	2.4	4	6	0.2	0.39	0.27**	0.26**
$L.S.D_{0.01}^{0.05}$.45			2.8				5.4				0.11		
L.S.D 0.01		3.	.22			3.7	9			7.1	1			0.14	-8	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacterial treatment

P₁: Fatma P₄: Marglob H₁%: Heterosis and H_r%: Reciprocal heterosis.

NF3P: Number of fruits for the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

The results presented in Table 10 showed that the parental variety Castel rock (P_2) had the highest value among all treatments for number of fruits for the first three pickings and total number of fruits. The parental variety Tigerella (P_3) had the highest mean value in all treatments for early yield and total yield. The F_{1r} reciprocal hybrid $P_3 \times P_2$ gave the highest mean values for number of fruits of the three first pickings in control T_1 , in fungi and bacterial treatment T_3 and bacterial treatment, but the F_1 hybrid $P_2 \times P_3$ had the highest mean values of 34 in fungi treatment T_2 . The F_{1r} reciprocal hybrid $P_3 \times P_2$ showed the highest mean values in all treatments for total number of fruits. On the other hand, the F_1 hybrid $P_2 \times P_3$ gave the highest mean

values in all treatments for early weight of yield and total weight of fruits. It was noticed that the highest mean value was obtained by bacterial treatment T_4 which revered the important role of bacteria in increasing the total yield of tomato. The number of fruits of three fruits pickings showed significant heterotic values of the reciprocal hybrid $P_3 \times P_2$ in control T_1 (12.1%), fungi and bacteria T_3 (11.8%) and bacteria treatment T_4 (11.2%), except 51.9% heterosis in fungi treatment T_2 was found in the F_1 hybrid $P_2 \times P_3$. The reciprocal hybrid $P_3 \times P_2$ showed highly significant values in all treatments for total number of fruits. However, heterosis of the hybrid $P_2 \times P_3$ was significant in all treatments for total weight of fruits.

Table 10. The mean performance of parental varieties P₂, P₃ and their hybrids and heterosis under the four treatments for yield component traits.

	ment trans.								
Traits& Treat.	N	NF3P	W	F3P		TNF		TWF	
Geno.& Heterosis	T_1 T_2	T_3 T_4	T_1 T_2	T ₃ T ₄	T ₁	T_2 T_3	T ₄ T	1 T ₂ T ₃	T ₄
P_2	37.3 30.6	42 48.6	0.312 0.24	5 0.34 0.353	81.3	68.6 97.6	114 1.0	05 0.826 1.15	1.51
P_3	30.6 26	36 41.6	0.322 0.28	7 0.360 0.411	79.3	63 91.6	104 1.1	5 1.02 1.29	1.43
M.P	33.9 28.3	39 45.1	0.317 0.26	6 0.35 0.382	80.3	65.8 94.6	109 1.	1 0.923 1.22	1.47
F_1	37.6 34	43 50.6	0.474 0.47	6 0.590 0.639	90.6	70.6 112	133 1.8	31 1.62 1.88	2.06
F_1 -M.P	3.7 5.7	4 5.5	0.157 0.21	0.24 0.257	10.3	4.8 17.4	24 0.7	1 0.697 0.66	0.59
$H_1\%$	10.9** 51.9**	10.3 10.9	49.5 31.8	3 68.5 67.3°	12.8	3.25° 18.3**	22 72.4	4** 75.5** 54**	40.1**
F_{1r}	38 30.6	43.6 50.7	0.382 0.31	2 0.415 0.462	112	90 131	157 1.4	17 1.21 1.51	1.67
F_{1r} -M.P	4.1 2.3	4.6 5.6	0.065 0.04	6 0.065 0.08	31.7	24.2 36.4	48 0.3	37 0.287 0.29	0.2
H_r %	12.1** 8.12	11.8 11.2	20.5 17.2	2 18.5 20.9	39.4 3	6.7 38.5**	44 40	31 23.7**	13.6**
L.S.D 0.05	2	2.12	2	2.51		4.69		0.098	
L.S.D 0.01	2	2.79	3	5.28		6.16		0.128	
F_1 - F_{1r}	-0.4 3.4**	-0.6 -0.1	0.92 0.16	4 -0.24 0.177	-21.4** -1	19.4** -19**	-24** 0.32	2** 0.41** 0.37**	0.39**
L.S.D 0.05	2	2.45	2	2.89		5.42		0.113	
L.S.D 0.01		3.22	3	5.79		7.11		0.148	

T₁: Control, T₂: Fungi treatment, T₃: Fungi and bacteria treatment and T₄: Bacterial treatment

P2: Castel rock P3: Tigerella H1%: Heterosis and Hr%: Reciprocal heterosis.

NF3P: Number of fruits for the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

The results which obtained in Table 11 showed that the parental variety Castel rock (P_2) had the highest mean value in all treatments for early and total yield components versus the parental variety Marglob (P_4) . The F_1 hybrid $P_2 \times P_4$ gave the highest mean values in all treatments for early and total yield components.

High significant heterosis were obtained in all treatments for the early yield NF3P, TNF and TWF. The results presented in Table 12 showed that the parental variety Tigerella (P_3) had the highest and best mean values in all treatments for early yield {NF3P and WF3P} and total yield {TNF and TWF} versus the parental variety Marglob P_4 . The best values for yield components was shown in bacterial treatment T_4 which refferd to the promoting of plant growth which leading to increasing total yield per plant. The F_1 hybrid $P_3 \times P_4$ had the highest mean value for number of fruits for the first three pickings among all the treatments.

Also, the F_1 hybrid $P_3 \times P_4$ gave highest mean values for weight of fruits for the first three pickings in control T_1 (0.457 kg) and in fungi treatment T_2 (0.360 kg). Meanwhile, the F_{1r} reciprocal hybrid $P_4 \times P_3$ had highest mean values for the same trait in fungi and bacteria treatment T_3 (0.506 kg) and in bacteria treatment T_4 (0.58

kg). The F_{1r} reciprocal hybrid P₄×P₃ had highest mean values in all treatments for total number of fruits and total weight of fruits but the highest values was shown in bacterial treatment which reflected the maternal effect on these traits. The F₁ hybrid P₃×P₄ showed significant heterosis in all treatments for number of fruits for the first three pickings. Furthermore, the F_{1r} reciprocal hybrid P₄×P₃ gave high mean values for weight of fruits for the first three pickings in fungi and bacteria T₃ (50.1%) and in bacteria treatment T₄ (52.6%). Significant heterosis were showed for total number of fruits and total weight of fruits in the reciprocal hybrid P₄×P₃ among all treatments. The effect of maternal heterosis were clear in this hybrid $(P_4 \times P_3)$ for total number of fruits and total weight of fruits. The results of heterosis for yield components were similar to those obtained by Chinedozi et al., (2014), Hussein and Basheer (2016), Hannan etal., (2007), Elsayed (2017) and Alice et al., (2001), they found that tomato hybrids expressed significantly high percentage of positive heterosis over mid-parent for number of flower per plant, number of fruits per plant and fruit weight per plant. Results also showed a direct inhibition of the pathogenic strains manifested by Bacillus sp.

Table 11. The mean performance of parental varieties P₂, P₄ and their hybrids and heterosis under the four treatments for yield component traits.

ti cati	nents for yr	ciu con	пропсп	t ti aits.	1										
Traits& Treat.	N	VF3P			W	F3P			T	NF			TV	VF	
Geno.& Heterosis	T_1 T_2	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
P_2	37.3 30.6	42	48.6	0.312	0.245	0.34	0.353	81.3	68.6	97.6	114	1.05	0.826	1.15	1.51
P_4	24 16.6	28	32.6	0.282	0.22	0.314	0.350	70	52.6	84	96	0.836	1.98	0.895	0.998
M.P	30.6 23.6	35	40.6	0.297	0.232	0.327	0.351	44.2	60.6	90.8	105	0.943	1.40	1.02	1.25
F_1	43.6 37	47.6	57	0.671	0.545	0.698	0.778	102	81.3	114	144	2.14	2.41	2.24	2.46
F_1 -M.P	13 13.4	12.6	16.4	0.374	0.313	0.371	0.427	57.8	20.7	23.2	39	1.19	1.01	1.22	1.21
H ₁ %	42.5** 56.7**	36**	40.4^{**}	125	134	113	121	34.9**	34.1**	25.5**	37.1**	126**	72.1**	119**	96.8**
F_{lr}	37.6 34	43.6	54.3	0.531	0.465	0.579	0.674	99.6	69.6	120	140	1.97	2.32	2.07	2.27
F_{1r} -M.P	7 10.4	8.6	13.7	0.234	0.233	0.252	0.323	55.4	9	29.2	35	1.02	0.92	1.05	1.02
H _r %	22.8**44.1**	24.5^{**}	33.7**	78.7	100	77.1	92	31.7**	14.8**	32.2**	33.3**	108**	65.7**	102**	81.6**
L.S.D 0.05		2.12			2.	51			4.	69			0.0)98	
0.01		2.79			3.	28			6.	16				28	
F_1 - F_{1r}	6** 3*	4**	2.7*	0.14	0.08	0.119	0.104	2.4	11.4**	-6 [*]	4	0.17**	0.09	0.17**	0.19**
L.S.D 0.05		2.45			2.	89			5.	42			0.1	113	
L.S.D 0.01		3.22			3.	79			7.	11			0.1	148	

T₁: Control; T₂: Fungi treatment; T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

P₂: Castel rock P₄: Marglob H₁%: Heterosis and H_r%: Reciprocal heterosis.

NF3P: Number of fruits for the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

Table 12. The mean performance of parental varieties P₃, P₄ and their hybrids and heterosis under the four treatments for yield component traits.

	ment ti		F4 B			****	1 D			TTA.				(T) X Y	77	
Traits& Treat.		N	F3P			WF	3P			TN	(F			TV	V F	
Geno.& Heterosis	T_1	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T_4	T ₁	T ₂	T ₃	T ₄
P_3	30.6	26	36	41.6	0.322	0.287	0.360	0.411	79.3	63	91.6	104	1.15	1.02	1.29	1.43
P_4	24	16.6	28	32.6	0.282	0.22	0.314	0.350	70	52.6	84	96	0.836	0.662	0.895	0.998
M.P	27.3	21.3	32	37.1	0.302	0.253	0.337	0.381	74.6	57.8	87.8	100	0.993	0.841	1.09	1.21
F_1	39.6	34.3	44	52.3	0.457	0.360	0.489	0.56	82	68.3	97.3	115	1.22	1.04	1.31	1.61
F_1 -M.P	12.3	13	12	15.2	0.155	0.107	0.152	0.179	7.4	10.5	9.5	15	0.227	0.199	0.22	0.4
H ₁ %	45**	62.4**	37.5**	40.9**	51.3	42.2	45.1	47.3	9.92**	18.2**	10.8**	15**	22.8^{**}	23.6**	22.4**	33**
F_{1r}	38.3	32.6	42.6	52	0.455	0.353	0.506	0.58	82	69	97.6	115	1.31	1.27	1.43	1.62
F_{1r} -M.P	11	11.3	10.6	14.9	0.153	0.1	0.169	0.199	7.4	11.2	9.8	15	0.317	0.429	0.34	0.41
H _r %	40.2^{**}	53**	33.1**	40.2^{**}	50.6	39.5	50.1	52.6	9.92**	19.4**	11.2**	15**	31.9**	51**	33.6**	33.8**
0.05		2	.12			2.5	1			4.6	5 9			0.0	98	
L.S.D 0.03		2.12 2.79				3.2	8			6.1	.6			0.1	28	
F_1 - F_{1r}	1.3	1.7	1.4	0.3	0.002	0.007	-0.017	-0.02		-0.7	-0.3	-0.3	-0.09	-0.23**	-0.12	-0.01
L.S.D 0.05		2	.45			2.8	9			5.4	12			0.1	13	
L.S.D 0.01		3	.22			3.7	9			7.1	.1			0.1	48	

T₁: Control, T₂: Fungi treatment, T₃: Fungi and bacteria treatment and T₄: Bacterial treatment.

P₃: Tigerella P₄: Marglob H₁%: Heterosis and H_r%: Reciprocal heterosis.

NF3P: Number of fruits for the first three pickings, WF3P: Weight of fruits for the first three pickings, TNF: Total number of fruits and TWF: Total weight of fruits.

In conclusion, most of tomato hybrids induced in this study were resistant to *Fusarium* wilt disease and the higher values of vegetative and biochemical traits, as well as, yield components traits were obtained under the effect of *Bt* treatment T₄. These results indicated that *Bt* played a significant role in the course of controlling natural biotic stress which leading to healthy plants increased yield components as well.

REFERENCES

- Alice, K., K. V. Peter and S. Rajan. 2001. Heterosis for yield components and fruit characters in tomato. Journal of Tropical Agriculture, 39: 5-8.
- Bai, Y. and P. Lindhout. 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in future? . Annals of Botany, 100(5):1085-1094.
- Biswas S.K., N. K. Pandey and M. Rajik. 2012. Inductions of defense response in tomato against *Fusarium* wilt through inorganic chemicals as inducers. J. Plant Pathology & Microbiology, 3 (4): 1-7.
- Bray, H. G. and W.V. Thrope. 1954. Meth. Biochem. Anal. 1: 27-52.
- Chinedozi A., C. U. Agbo and G. E. Nwofia. 2014. Hybrid vigor and genetic control of some quantitative traits of tomato (Solanum lycopersicum L.). Journal of Genetics, 4: 30-39.
- Dhaliwal, M.S., S. Singh and D.S. Cheema. 2003. Line x tester analysis for yield and processing attributes in tomato. J. Res., 40(1): 49-53.
- Elsayed A. Y. A. 2017. Population parameters and path-coefficient analysis of tomato grown under heat stress. Alexandria Science Exchange Journal, 38 (3): 600-612.
- Hannan M.M, M.B. Ahmed, M.A. Razvy, R. Karim, M. Khatun, A. Haydar, M. Hossain and U.K. Roy. 2007. Heterosis and correlation of yield and yield components in tomato (*Lycopersicon esulentum* Mill.). American-Eurasian Journal of Scientific Research, 2 (2): 146-150.
- Hussein A. S. and N. J. Basheer. 2016. Cost benefit ratio of infected tomato yield by *Fusarium* wilt disease. Natural and Social Sciences, 4 (4): 103-108.

- Kansouh A. M. and A.G. Zakher. 2011. Gene action and combining ability in tomato (*Lycopersicon* esculentum Mill.) by Line X Tester Analysis. J. Plant Production, Mansoura Univ., 2 (2): 213 – 227.
- Leslie J.F. and B.A. Summerell. 2006. The Fusarium laboratory manual. Blackwell Professional; Ames, IA, USA.
- Manojkumar S., H. K. Singh and S. Borthakur. 2016. Evaluation of combining ability for the expression of traits of tomato (*Lycopersicon esculentum* Mill.) through the Line X Tester analysis. Journal of Agri. Search, 3(2): 127-129.
- Mazza P., F. Zani and P. Martelli . 1992. Studies on the antibiotic resistance of Bacillus subtilis strains used in oral bacterio therapy. Boll Chim Farm. 1992, 131(11):401-408.
- Nourozian J., H. R. Etebarian and G. Khodakaramian. 2006. Biological control of *Fusarium graminearum* on wheat by antagonistic bacteria, Nutraceutical and Functional Food, 28-29.
- Pataki J.K., P.M. Michener, N.D. Freeman, R.A. Weinzierl and R. H. Teyker. 2000. Control of Stewart's wilt in sweet corn with seed treatment insecticides. Plant Diseases, 84: 1104-1108.
- Rai G.K., R. Kumar, A.K. Singh, P.K. Rai, M. Rai, A.K. Chaturvedi and A.B. Rai. 2012. Changes in antioxidant and phytochemical properties of tomato (*Lycopersicon esculentum* Mill.) under ambient condition. Pak. J. Bot., 44(2): 667-670.
- Sadasivam, S. and T. Balasubraminan. 1987. Practical manual in biochemistry. Tamil Nadu Agricultural University, Coimbatore, P. 14-16.
- Singh A. K. and B. S. Asati. 2011. Combining ability and heterosis studies in tomato under bacterial wilt condition. Bangladesh J. Agril. Res.,36(2):313-318.
- Singh, R. K. and B.D. Chaudhary. 1985. Biometrical method in quantative genetic analysis. Third edition katyani Publisher, New Dehli, India, 110-112.
- Steel, R. G. and J.H. Torri. 1960. Principles and procedure of statistics Mc. Graw Hill book Company. INC, New York.
- Sunil K. Y., B. K. Singh, D. K. Baranwa and S. S. Solankey. 2013. Genetic study of heterosis for yield and quality components in tomato (*Solanum lycopersicum* Mill). Afr. J. Agric. Res., 8(44): 5585-5591.

قوة الهجين لصفات الثمار ومكونات المحصول في الطماطم تحت ظروف العدوى بالفيوزاريم والمقاومة الحيوية باستخدام التضاد البكتيري

علي ماهر محمد العدل 1 ، خليفه عبد المقصود زايد 1 ، أشرف حسين عبد الهادي 1 ، سيف الدين محمد فريد 2 ، ميرفت إبراهيم كمال و سالى السعيد عبد العزيز إبراهيم 2

أ قسم الوراثة - كلية الزراعة – جامعة المنصورة

2 معهد بحوث البساتين – مركز البحوث الزراعية بالجيزة – مصر

تهدف هذه الدراسة الي إنتاج تراكيب وراثية هجينة في الطماطم مقاومة لمرض النبول الفيوزاريومي في نباتات الطماطم ، هذا بالإضافة إلي إستخدام بكتيريا الباسيلس ثيرونجنسز كوسيلة للمقاومة الحيوية ضد فطر الفيوزاريم إستخدمت في هذه الدراسة أربع أصناف من الطماطم لإنتاج 6 هجن و 6 هجن عكسية عن طريق نظام التزاوج الدوري الكامل. أوضحت النتائج الحصول علي قوة هجين عالية المعنوية من خلال التهجين بين $P_1 \times P_2$ بالنسبة لصفة طول النبات ، هذا بالإضافة إلي الحصول علي قوة هجين معنوية بواسطة التهجين العكسي بالنسبة لنفس الصفة في المعاملة بالفطر وتجربة المقارنة. أعطى الأب (P_3) قيما مرتفعة بالنسبة لمحصول النبات في المعاملات الأربعة ، بينما أعطى المعاملة بالبكتريا إذا ما قورنت بالمعاملات الثلاثة الأخرى قيم مرتفعة لنفس الصفة للنبات. بينما أعطى الهجين $P_2 \times P_3$ قيما مرتفعة في المعاملات الأربعة بالنسبة لصفة وزن الثمار الكلي للنبات ويعود ذلك الي تأثير الوراثة اللانووية . أعطى الهجين $P_2 \times P_3$ قوة هجين عالية المعنوية في المعاملات الأربعة بالنسبة لوزن الثمار الكلي للنبات ويعود ذلك الي تأثير الوراثة اللانووية . أعطى الهجين $P_3 \times P_3$ قوة هجين عالية البسيلس ثيرونجنسز المستخدمة كعامل للمقاومة الحيوية في هذه الدراسة قد أدت الي تحسين كل الصفات التي تم قياسها في هذه الدراسة و للنبسيلس ثيرونجنسز المستخدمة كعامل للمقاومة الي أن الطماطم تعتبر مشابهة للنباتات الأخري في إظهار صفة قوة الهجين والتي تعتمد على البعد الوراثي بين الأصناف المستخدمة كآباء.