جامععة اللمنو فينه

قّسم الـهندسـه الكهربيـه
الثرقةّ: الثالثّة
الارجة : . .

المـاده : نظم التحكم و تطبيقاتّها
Y. 1011 Y Y. : التاريِ

Answer the following question:s

1) A- A servo mechanism as shown in Fig. 1,

1: Determine the transfer function of each element and the overall transfer function , and ,
(15 Marks)
2: Draw the equivalent block diagram of the servo mechanism .
B - Determine the overall transfer function $C(s) / R(s)$ of the control system shown in Fig. 2.
(5 Marks)
2) A- Figure (3 a) shows a mechanical vibratory system. When 2 Ib a force (step-input) is applied to the system, the mass (m) oscillates as shown in Fig (3.b). Determine m, f, and k of the system from this response curve.
(10 Marks)
B - Consider the system shown in Fig 4. Determine the range of k for stability.
(10 Marks)
3) The open loop transfer function of unity feedback as:

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{k}}{\mathrm{~s}\left(\mathrm{~s}^{2}+4 \mathrm{~s}+5\right)} \quad, \mathrm{H}(\mathrm{~s})=1
$$

A - Sketch the root loci for the system. Observe that for small or large values of K the system is underdamped and for medium values of K it is over damped, then, discuss this observation and describe the system stability at each zone.
(15 Marks)
B - Determine the value of K so that the damping ratio of a pair of dominant complex conjugate closed loop poles is 0.5 .
(5 Marks)
4) Obtain the phase and gain margins of the following control system as :

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+1)(\mathrm{s}+5)}, \mathrm{H}(\mathrm{~s})=1
$$

For two cases where $\mathrm{K}=10$ and 80 , and , check the system stability in each case.
(20 Marks)
5) Consider the following control system, the open loop transfer function is given by

$$
G(s) H(s)=\frac{K}{s(s+1)(0.4 s+1)} \text {, and, } H(s)=1
$$

It is desired to compensate the system so that the static velocity error coefficient $\mathrm{K}_{\mathrm{v}}=5 \mathrm{sec}^{-1}$, the phase margin is at least 36°, and the gain margin is at least 10 db .
(20 Marks)

All the best
 M. N. SERAG

Fig. 2

Fig. (3-b)
Fig. (3-a)

Fig. 4.

