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APPLICATION OF FINITE ELEMENT RESIDUAL SCHEME TO
STEADY UNCONFINED FLOW SUBJECT TO RAINFALL
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ABSTRACT

A two— dimensional finite element method is used to study
the problem of steady-state unconfined seepage due to rainfall
through porous media. The method 1is based on the finite
element residnal scheme. Howogeneous and nonhomogeneous so0il
domains are considered and solved numerically. HNumerical
results are compared with that obtained from the analytical
approximations to be in the same order of magnitude. To
facilitate its practical use, the scheme has been programmed
for computer solution using FORTRAN-IV language.

INTRODUCTION

Subsurface drainage system aims at maintaining the waler
table at optimum depth of root zone. 7The water table
[luctuations in response to replenishment and deep percolation
is common in many groundwater basins and affects either the
entire basin or parts of it. Groundwater may be replenished by
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natural precipitation, irrigation, or artificial recharge.
Most of the existing theories attempt to describe the water
table fluctuations in response to constant replenishment
between equally-spaced drains on flat lands.

Boussinesq [1] derived a nonlinear partial differential
equation for groundwater flow in a gently sloping aquifer
above an impermeable layer. The Boussinesq equation is5 based
on the Dupuit-Forchheimer assumptions and 1is an approximate
model used to describe the phreatic surface. Warner [9] solved
the Boussinesq equation, by taking replenishment into account,
for groundwater flow in a phreatic aquifer resting on a
sloping bed between two reservoirs and between a water divide
and a reservolr,

Kraijenhoff ¥Yan de Lear [5,61 analyzed Lhe effects of
constant recharge and intermittent recharge on groundwater
flow toward drains in a horizontal aquifer using the
Boussinesq equation and applying the instantaneous unit
hydrograph concept. Massland [7] also solved the Boussinesq
equation for a horizontal aquifer receiving both conslant
recharge and intermittent recharge. Schmid and Luthin (8]
analyzed the problem of a steady-state drainage of sloping
land with constant recharge rate by parallel ditches resting
on an impermeable layer by solving the Boussinesq equation.

The purpose of this paper 1s: 1)} to have a numerical
practical lool to handle steady unconfined seepage flow
which is affected by rainfall, or artificial recharge; 2) to
solve more complex problems that are not easy to be solved
analytically: and 3) to compare the obtained results with the
closed form solution for Boussinesq's equation considering
steady unconfined seepage Dbetween symmetrical and
unsymmetrical water ways., In addition, the case of Lhe
multiaquifer (double layers) is demonstrated.

MATHEMATICAL FORMULATION

Consider the problem of two-dimensional unconfined aquifer
shown 1o Fig. (1). Assuming that the so0il matrix and the fluid
in the pores are incompressible. The continuity equation for
steady flow through a saturated, homogeneous and isotropic
porous medium describing this problem, in a cartesian
reference frame is the Doussinesq egualion, Narr[3]:
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d dh
RiL/T1
in which k is the hydraulic 41111111‘5 lll‘llli‘d'

conductivity, LTﬂ: R is a
caﬂstant replenishment rate,
LT ; and h is the hydraulic
head, L.

Eq.(l) is to be solved sub-

ject to the following boundary Impervicus base

conditions:

dh/3y = 0 on the impervious Fig. (1) Phreatic aquifer
houndary 1-1"'; subject to rainfall, R.

h = It on the upstream face 1-2;

h = H2 on the downstream Face 1'-2";

h =y on the upstream and downstream seepage [aces 2-3
and 2'-3', respectively;

¢h/¢y = R/k and h = ¥ on the free surface 3-3'; and

k Jh/dy = R on the ground houndary 4-4'.

RESIDUAL FLOW TECHNIQUE

In this technique, the geometry of the finite element mesh
is kept constant during the iterative solution process. The
approach proposed by Desai [2], is the so—called Residual Flow
procedure. In the case of steady-state problems, the iterative
solution process is initiated by performing a confined
analysis 1n which boundary cenditions of ‘“previous"” and
"impervious" Lypes only are applied to the various portions of
the mesh contour. The nodal hydraulic heads obtained hy this
calculation are used to find the elements crossed by line
h=y(x} ( denoted by F-5 in Fig.(2) ), that represents a TFirst
approximation of the free surface. The position of this line
{on which only the conditiun h=y 1is Ffulfilled) within the
eiements is determined by means of:

1 =
h =8 {H]} (2)
where N is the vector of interpolation functions.

In order to enforce also the second boundary condition
dhfdy = R/k, it is necessary to evaluate the Flow velocity V
that crosses the [free surface, FS,. taking into account
Darcy’s law.

Ve = —k: Jdh/dx  and (3)
Vo = —kv Jdh /:_:" ¥
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Fig.(2) Approximation of free surface, F§, through an element.

to satisfy the second boundary condition, the vertical
velocity component must have the same value of R.

The flux ( associated with V) <c¢rossing the frce surlace
can be obtained, using a terminology suitcd for stress
analysis problems, as a "distributed load" on segment, FS.
This load has to bLe reduced to a certain wvalue in order to
fulfill the second boundary condition. This can be done by
applying to the nodes of the corresponding element a set of
"residual" nodal [lux q that produce through the segmeni, FS$,
a flux equal to the one associated with V, but with opposite
sign if V>R,

q=+[NVTds (4)

F

1]

In Eq. (4), T represents the "thickness" of the [inite element
discretization. By applying the residual flux q , evaluated
for all the elements crossed by the [ree surface, to the
relevant nodes of the mesh and by solving Eq. (3), a new
vector of nodal hydraulic heads is determined.

{EY {N} = 1(aq) (3)

where [ K ] is the total [low watrix. This will lead Lo a
different, more refined, approximation of the free surface
geometry and to a new residual [flow vector. The iterative
process is continued until the changes in geometry of the f[ree
surface become negligible.

ANALYTICAL APPROXIMATION

In order to provide a simple check of the numerical model,
and to compare its results on an order of magnitude scale,
analytical approximation is presented. Kamensky obtained his
approximate solution to describe the free surface by
integrating Eq. (1) which takes the form:
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F > >

ho= o hf - (b - b /L e (R/R) (L-x) x (6}
Describing the distance to the maximum elevation of the free
surface in Fig. (3) as a called the water divide, it is [found

from Kamensky [4] that:
a =1L/2 - K/R - ( hf - hj y /2L (7)

where a is the distance measured from point o as shown in
Fig.(3}.

Fig.{3) Flow domain under consideration.
NUMERICAL RESULTS

It is necessary to mention here that, the residual flow
procedure is one of the constant mesh methods which require
some specific provisions when the intersectiom between the
free surface and the seepage face (i.e., the “Yexit" point of
the free surface) has to be determined. To do this, exit
points are initially located in correspondence with the last
nodal points of the adopted schematization and then they were
moved step by step upward until the pore water pressure in
each node above them resulted negative. In fact, if we assume
at the beginning of an iteration the position of Lthe exit
points those are above the real ones, the results of that
iteration will not allow us to determine their new location
for the next iteration.

The problems wunder consideration have been solved
numerically under the following assumptions:

i) The replenishment is received at a constant rate which is
less than the hydraulic conductivity of the soil;

ii) The deep percolation moves vertically downwards until it
joins the main groundwater body, and

iii) The s0il is drained by parallel drains which may have
either the same water levels or different water levels..
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To solve these problems numerically, the assumed domain
has been discretized as shown in Fig.{(4) using 286, three
nodded triangular elements with a total of 174 nodal points.
Referring to the first type of the problems, assuming R/k=0.2,
Hi=Hz=2.0 m, the obtained water table location after three
iterations has been illustrated in Fig.(5) compared with the
analytical one. It can be seen that the present soiution for
the free surface agrees with the approximate one everywhere
except in the vicinity of the seepage faces.

As a result of the present solution, flow net, outflow
velocities (Vs), and the floor creep velocity are illustrated
as shown in Fig.(6). From this figure it is observed that the
maximum exit velocities occur at the drains water levels and
their minimum values occur at the Iimpermeable layer face.
Also, one can see that, at the midway of the dowain, a
stagnation point, (V¥=0) has been developed which agrees with
the fact that, at the line of symmetry the [low has been
divided and no flow takes place perpendicular to this line.
Several problems have been solved considering different values
of R/k (0.05-0.5), and the obtained results of the heighlt of
exit points are illustrated in Fig.(7].

Referring to the solution of the second type of the
problems, the same value of R/k=0.2 has been used again wilh
Hi=2Hz=4 m. The free surface location, that was obtained after
three iterations too, has been illustrated in Fig.(8).
compared with the approximate one, The corresponding flo® net,
exit velocities , and the floor c¢reep wvelocity have been
illustrated in Fig.(9).

To define the range of the approximate solution wvalidity,.
some additional problems were solved considering R/k= 0.4-0.8,
Obtained phreatic surfaces are illustrated in Fig.(10). From
this Figure, it is c¢lear that the difference between the
present solutions and the approximate ones is increased wilh
as the ratio of rainfall to permeabilily, R/k. is increased.

To illustrate the flow behaviour in the case of heavy
rainfall rate within upstream water head Lhat is enough to
overcome a part of the upstream outflow, a problem with
retaining eight meters of water in the upstream side with the
downstream side dry, has been solved with R/k=0.6. Obtained
free surface location with the corresponding fFlow net,
inflow-outflow velocities, and the floor creep velocity are
illustrated in Fig.(11). From this figure it is noted that,
the point of stagnant velocity has been developed at the
upstream inlet face and the flow has been divided to inflow
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Fig.(13) Solution of the problem for nonhomogenous medium
ki/k2=2.0 with R/k=0.6.
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and outflow under and upper this point, respectively.

The problem of steady unconfined seepage subject to
rainfall through nonhomogeneous medium has been solved with
R/k=0.6. To handle this type of problems, two cases are
considered. One of them has a lower layer with a higher
permeability than the upper one, ki/kz=1/%Z. The other case has
s higher permeability in the upper layer than the lower one,
ki/kz=2.0. The obtained results are illustrated in Figures
{(12) and (13), respectively. Inlet, outlet and creep
velocities are plotted with the corresponding flow net. Frum
these figures it is observed that, decreasing the lowmer layer
permeability rises the level of water table and vice-versa.

CONCLUSIONS

A numerical mudel for the prediction of the free surface
position, taking into account the influence of steady
rainfall, is developed. The model is based on the [finite
element residual scheme. Ohtained results are compared with
the analytical! solution developed by EKamensky bhased on
Boussinesg's equation. TFrom these analyses, it may be
concluded that, Boussinesq's equation is based on tlhie Dupuit-—
Forchheimer assumplions, which are nol well matching the
actual flow system. This limitation, therefore, introduces
some error in the analytical solutions. The error would be
greater near the boundary faces than at Lhe midpoint for light
rates uf rainfall, (B/kx<0.2). In the cases of bheavy rates
(R/k>0.2), the analytical results largely deviates from the
numerical resulfs.

Generally, for the case of light rates of rainfall, the
analytical solution may be used with a reaseonable accuracy to
predict the phreatic surface between drains but not to predict
the level at which water seeps out from the region. Steady
unconfined flow through a two-layered aquifer system with the
presence of steady rainfall has been solved numerically using
t he residual flow finite elementl technique. The
non—homogeniety of the system affecls both Lhe flow patern and
water table levels.
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