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Nonlinear Panel Flutter Analysis at High Supersonic Speed
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Abstract

Exterior panels forming the exterior skin of flight vehicles traveling through the atmosphere at
high supersonic speeds are often susceptible to the occurrence of limit-cycle type self- excited
vibrations called flutter. Panel flutter is resulting from the dynamic instability of the
aerodynamic, inertia, and elastic forces of the sysiem.

The equation of motion for panel flutter are derived using Von Karman's large deflection plate
theory and quasi-steady acrodynamic theory. The equations are given in terms of the
displacement and are presented in non-dimensional form. Galerkins method is used to
transform the system of nonlinear partial differential equations into a system of nonlinear
ordinary differential equations in time variable. The obtained equations are then solved by the
method of harmonic balance and Newton-Raphson algorithm. The results are compared with
both theoretical and experimental results given in publications.

Then, a parametric study is performed to study the effects of aerodynamic loading,
aerodynamic damping, structural damping, in-planc applied loads, thermal stresses and cavity

pressure.
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I. Introduction:

Panel flutter results from the interaction
between the panel and the flow pressure
forces brought about by the panel motion.
This causes a loss of the stability of the panel
m its un-deformed shape, so that any
disturbance applied to it leads to oscillations
of growing amplitude. Thus, it is a self
excited oscillation resulting from the
dynamic instability of the aerodynamic,
inertia, and clastic forces of the system. This
growth is limited, however, by the membrane
tension stresses induced in the panel by the
flutter motion itself. The result of this self-
limiting action is a sustained oscillation of
constant amplitude, called limit-cycle motion.
There are many variables that affect panel
flutter and a major problem involved in the
study of panel flutter is the isolation and
determination of the significance of these
variables. The fluiter boundary for a
particular panel is a complex function of such
variables as panel configuration, mid-plane
stress, edge restraint, flow angularily,
dynamic pressure, Mach number, pressure
differential, structural damping, aerodynamic
damping, and finally the boundary layer
thickness. Due to the complexity of panel
flutter, most theoretical studies make usc of
simplified assumptions, see Ref [20].
However these assumptions are usually so
restrictive that the theoretical model does not
accurately represent realistic conditions. In
fact it is found that the application of the
exact aerodynamic theory does not remove
the discrepancies that presently exist between
theory and experiment for flutter of stressed
panels. The inclusion of structural damping is
found to have a large effect in some instances
and can tend to eliminate some of the
differences.

There are certain unifying features common
to all aeroelastic problems which provide a
convenient framework for introducing and
classifying the entire subject. These features
include the casting of the aeroelastic
equations in an operator form and the
generalized solution of such operator
equations, see Ref. [1]. Investigation of the
theoretical foundations, methods of analysis
far treating linear aercelastic models, their

nonlinear counterparts, and the requisite
aerodynamic theory were discussed, with
the three levels o approximation to the
motion dependent aerodynamic pressures
on an oscillating panel, see Ref. [2]. The
simplest of these and consequently the
most widely used is the so called " piston
theory, see Ref. [3]. Once the
mathematical model has been established,
the methods of solution are required to
investigate the parameters variations.
Since an exact solution of the nonlinear
flutter problem is not known, an
approximate method is used. The most
straight forward method used in the
analysis for the flutter of a finite panel is
the Galerkin method. It is used to reduce
the mathematical problem to a system of
nonlinear, ordinary, integral-differential
equations in time see Ref. [4], which are
solved by the method of describing
functions /harmonic balance method or
direct numerical integration. Fortunately,
as far as the treatment of the panel flutter
of a finite plate is concerned, Galrkin's
method gives qualitatively correct results.
Another more powerful method (in case of
linear anaiysis) used to check the result of
Galerkin's  method is the Laplace
transformation method see Ref. [5].
Another method for treating the nonlinear
panel flutter problems is the so called
perturbation technique, that is used to
examine theoretically  the  general
characteristics of non-linear flutter at high
supersonic Mach number, see Ref. [6].
Von Karman's large deflection plate theory
and the quasi-steady aerodynamic theory
have been employed. The effect of
structural damping has been included.
Galerkin's technique has been used in the
space  variables and the ordindry
differential system obtained is solved by
an asymptotic expansion using method of
multiple time scales. The results obtained
show that, as a first approximation, the
amplitude of the limit cycle depends only
upon the fundamental parameter (non-
dimensional aerodynamic loading), the
aspect ratio, and the damping parameter
(including structural damping effect). The
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results are in excellent agreement with those
obtained numerically in Ref. [7] and Ref. [8}.
A comparison between theoretical and
experimental results is required to modify or
to improve the mathematical models if
necessary. A comparative experimental and
theoreticat study of the flutter of flat panels in
low supersonic flow was performed. The pre-
flutter panel motion and the motion during
flutter were studicd in detail, as shown in
Ref. [5]. A dctailed comparison reveals
considerable disagreement in the flutter
boundaries at supersonic Mach number less
than 1.4. The agreement between theory and
experiment improves at the higher Mach
numbers. In fact the disagreements between
theory and experiment are mainly due to four
factors, these factors are:

-The use of linear aerodynamic theory, where
most of the theoretical investigations have
utilized two-dimension static aerodynamic
theory (both with and without damping),
despite the fact that two dimensional theory
is considcred applicable only for a limited
range of pane! length-to-width ratio and
Mach number.

- Neglecting boundary layer and aerodynamic
heating effects (particularly panel excited by
turbulence).

- The imprecise idealization of the
complicated panel support conditions and
cavity effects.

- Neglecting nonlincar mid-plane stresses and
buckling is an over-idealization. Considering
all of the above factors in formulating the
mathematical model, the results of the theory
and the experiment will be in excellent
agreement, and thus the mathematical model
can be used to investigate the variation in
parameters. Flutler oscillations rarely cause
immediate failure of the panel, but they may
produce fatigue failure after a sufficient
period of time. The need to prevent this
occurrence, either by suppressing flutter
entirely or by limiting the severity of the
panel motion, often becomes the crifical
design criterion that determines the required
thickness (or more generally the stiffness) of
the panel. Many parameters govern the
resonance fatigue behavior including the
detail design, the skin thickness and

materials, the stiffener configurations and
the damping of the structure,

1I. Problem Formulation

I1.1, Equations of Motion

The plate under consideration is shown in
Fig. 1.The dimensions and properties of
the Plate are given in Table 2. The axes
are taken to be such that the x-, y- axes are
in the plane of the plate passing through
its reference plane (z=0), while the z- axis
is positive upwards. Under the
assumptions that plate thickness is small
in comparison with smallest lateral
dimension, which is the case in most
practical applications, the Kirchhoff's
hypothesis may be assumed to be valid.
With this assumption the in-plane
displacements u, v and the transverse
deflection w at an arbitrary point of the
plate in the x, y, and z directions will be:

U(X, Y. Z, t)=u0(x: ¥, Z)_'ZWO.X '
} (1)

_V(K, .Y'» z, t) = Vo(x! )I’ Z) —2 woal"

wix, y, z, ) = w(x, y, 1)

where 1°, v°, and w° are the values of u, v,
and w at the reference plane. It is
considered here that the plate thickness is
constant and the reference plane coincides
with the midplane of. the undeformed
plate. The fotal plate strains using
KirchhofT's hypothesis of thin plates are:

£y = &% + 2Ky
gy = €% + 2Ky } 2)
Exy = Exy T ZKyy

where €%, €. and €%y are the reference
plane strains, while Ky, Ky, and Ky, are the
plate  curvatures. They are given,
according to Von Karman-type geometric
nonlinearity, as:

mid-plane strain:

g% = U, +(1/2) w°,’

g% = v, +H1/2) w°’ } 3)
80::)' = Uo_}» + Vo‘x + Wo.x2 wo‘y2

mid-plane curvature:

Kx = -Wxx

Ky = -Wyy } 4
Ky = -2 Wiy

Once the total strains are obtained, the
siresses can be calculated from the stress-
strain relations where:
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E o
Oy = IT;(S,;‘I'VEOY)
. E o
0)’ = 1-9 Z (80)' tyve x) (5)
— E o
Oxy 201+ )(8 xy)

As in the classical plate theory, the stress
resultants and couples are defined by:

hf2
[Ny, Ny, Nyy) = f [0xs Oy, Oxy] dz {6-a)
-h/2
hi2
[My, My, Myy] :I[Gx, Oy, Oxy) 2dz (6-b)
-hf2

where:

Ny, Ny, Ny, are the membrane forces per unit
length.

M,, My, M,, arc the bending and twisting
moments per unit length.

The equations of motion of the plate in terms
of the plate displacements u, v, and w are
obtained by substituting the calculated stress
resultants and couples into the cquations of
equilibrium given by Ref. [10}]:

Nx,x+ Nx_\',)' =0 (7'3)
Nyyxt Nyy =0 (7-b)
Mx,xx+2Mx)',xy+My.yy+NxW,xx+2ny

Wyt Ny wyytg=phwg (7-¢)

Where, g stands for all external applied loads
on the plate, like the aerodynamic loading,
cavity pressure, and static  differential
pressure, etc. It is to be mentioned that the
foregoing equations of motion for the plate
were derived based on the assumption of
Kirchhoff's hypothesis, that the effect of
transverse shear deformation is neglected, (it
is true that the thinner the plate the more
accurate the hypothesis). Consequently the
plate is considered as homogencous,
isotropic, and of span-to thickness ratio more
than 15 satisfies all the requirements to use
the previous assumptions.

I1.2. Effect of Applied In-Plance Loading

If constant in-plane forces are applied in both
the x-, and y- directions, the resultant stresses
may be written as:

Ny D= Ny + NAY (8-a)
N,= N, £ N4 (8-b)
Where,

N, and N‘_\-('ri are the total in-planc loading.

N (AL and N,,(M" are the applied tensile or
compression in-plane loading.

The negative sign is for compression and
may cause buckling, while the positive
sign is for tension and has the effect to
oppose the applied lateral loading.

I1.3. Thermal Stresses in the Plate

If the plate is free to deform and if its
temperature is raised uniformly up to a
temperature T, above the stress-free
temperature, the thermal strain induced at
any point of the plate material will be:
e=0T and g=aT )]
Where o is the coefficient of thermal
expansion (assumed constant). The
temperature T can be regarded as the
temperature change relative to an arbitrary
temperature that is uniform throughout the
plate, If the plate is clamped all along its
boundaries, the strains in the plane of the

plate are zero and the stresses cs,xw') and
a,"*" will be given by:

: -E
o AT = 0.)‘('“-) - -EaT (10)

(1-)
Consequently the induced in-plane
loadings due to thermal stresses are:

1,2

NAD =[5, A4z (1
-h#2
- hl“? -
N = [ 6, dz (12)
-hf2

and the total in-plane loading due to
thermal stresses are: ]

N M=N,+N,"" (13-a)
N,M=N, +N,*" (13-b)
It is clear that the negative sign indicates a
destabilizing effect while the positive sign
indicates stabilization as explained earlier.

[1.4. Aerodynamic Loading

When an inviscid fluid with free stream
velocity Us, flows past a two dimensional
flexible plate in the longitudinal direction
(x-direction) as shown in Fig. 1, with no
static pressure differential across the plate,
then the velocity potential ®(x, y, z, 1)
may be described by its linearized form
(from the momentum equation) as:

T2 - (%1+Um5’x)2a) =0 (14)
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Where c, is the velocity of sound in the fluid.

It is assumed that the supersonic flow over

the plate is free of shocks, that is, the {low is
irrotational. The boundary conditions on the
velocity potential are:

30 1 1
5z —(a +U.,v& ) w on the plate
(13)
=p off the plate

Where w 1s the plate lateral deflection. The

pressure is given, from the unsteady
Bemoulli's equation, by:
i ]
po (5 + Uo3-) (16)

Where p, is the free stream density.

Equations (14) and (16) subjected to the

boundary conditions (15) can be solved by
integral transformation, see Ref. [l1], to
obtain an expression for the pressure loading
on the plate valid for all Mach numbers at
which linearization is acceptable. One of the
most acceptable expressions used to
represent the aerodynamic loading is called
the quasi-steady aerodynamic approximation,
written as:

-2q | ov 21 | ow
P=—Bq{%xi+~%—ﬁ TJ:T} (17)

Where 2 =M* - |
The first term in equation (17) represents the

geradynamic loading on the plate while the

second term  represents  aerodynammic
damping. This expression, which is derived
from the expansion of the reduced frequency
of the exact two dimensional unsteady flow,
can also be reduced to the well known piston
theory see Ref. [3], which is applicable in the
case of higher Mach numbers (M>2.0). It js
given in the following form:

. Aalow, 1 ow
P= B | ox + T (18)
It is clear from both expressions that the only
difference is in the damping term. If is
obvious that the difference is small for higher
Mach numbers (especially if it is considered
that aerodynamic damping effect is small). In
this formulation, the aerodynamic load and
the aerodynamic damping will be represented
by the use of the quasi-steady aerodynamic

- approximation expression.

M. 25

11.5. Cavity Aerodynamics

in formulating the problem we assume that
the effect of the air beneath the plate can
be neglected. This assumption can be
considered as true when the depth of the
cavity is large enough (large with respect
fo the plate spatial dimension). When, as
quite often is the case, the cavity depth "d"
1s smaller than the smaller spatial
dimensions, it is necessary to consider its
effect. Tt is shown in Ref. [12], that the
cavily has two main effects. First, the
static pressure within the cavity may be
different from that of the flow over the
plate  surface. This static pressure
difference will act as to bend the plate and
consequently create a tensile in-plane
force throughout the mid-plane surface.
Second, the plate motion may cause an
increase in the cavity pressure which in
tum changes the plate natural frequencies
due to the spring action of the air in the
cavity. The second effect will be
represented  with the help of the
formufation given in Ref. [[3]. In this
formulation, the equation goveming the
acoustic effects of the cavity in case of
non-viscous flow is represented as:

V"@-;‘z % =0 (19)

and the pressure due to the plate motion is
given by:

’\(I)
P=-p. 5 (20)
Where p. is the density of the fluid in the
cavity.
The boundary condition on are given by:
o0 _ Ow B )
=" a {at z=0) (21-a)
od
—— _—— 1_
= =0 (atz=d) (21-b)
o0

“— =0 (on sides of the cavity) (21-¢)
Equations (19) and (20) will be solved by
the transformation method, subjected to
the boundary conditions given by equation
(21). After a series of substitutions,

transformations, and integrations a final
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expression is obtained which represents the
equilibrium static pressure that would be
obtained by computing the isentropic
pressure rise due to the change in the cavity
volume caused by the instantaneous plate
deflection w. This equilibrium static pressure
takes the form:

2
Pc=- “{:1_1;1‘0[ 0] w(x, v, t) dy dx (22)

IL.6. Final form of the Equations

The final form of the aerodynamic equations
after substituting the terms representing the
external applied loads can be written as:

é—f([NxtN.x”‘”iNx‘”‘]Jr%ny =0 (23-a)
0
a—y{N}iN_).(Al.)._tN)an +6%ny =0 (23-b)

Mx,xx"'ZMxy,x)‘ +M)f“yy +Nx Woex
AL
tNyy Wy Ny Wy & [Nx( )+NX[AT)]

N (AT
W 2 [N 4 N wgy —

23{@ LLIQW} pc ¢

) ox U, 7 ot J abd
I I’_ w(x, y, )dydx-p, hyw o =0 (23-¢)
00

The applicd in-plane loadings are uniform
and constant throughout the plate so that the
first two equations will be written as:

N.\t,x + Nx)'.y =0

Ny« + Nyy =0 (24)
Substituting for Ny, Ny, Ny, My, M,, and
M,, from equations (6) into equations (24),
(23-c) to get the equations of the plate in
terms of the displacements u, v, and w, which
represents the set of nonlinear partial
differential equations of motion of the plate.
It is common and preferable to put thesc
equations into a non-dimensional form by
introducing the following non-dimensional
parameters:

_= u r:i _=ﬂ
% h ¥ h & h
. X =l Pl
Sheg . AT =%
g _1.348 9 biyd,
ox a0 dy ~ b dn
Dr’

and 1= w.t where ®,=

After a series of substitutions and
simplifications the following non-
dimensional form of the plate aero-elastic
equations is obtained.

The U-equation is given as:

- ) _ i, I malie
u.§§+d | fg u, .m‘i"dz fV_gn"i‘ _é'”“{ WEW e+

dlfe"v'é‘v.im"'dﬂ‘z‘;n‘;-&n} =0 (25"3)

The V-equation is given as;

¥ et OV ptdafll g+ _E{FW;W.M*

diw oW gz daW e Wq) =0 (25-b)
The W-equation is given as:

1
— e e
m {T’V.é«ﬁé&"’zﬁ W.ﬁ&ﬂn+f4 W nann £

{n—q(AL)_FH“{AT]}iFlC(AL);hg(AT)}_!_
l]
%W.(;"'ld\f’frﬂcg%wdqd&w."_

= (127 [T Tt ()
rzrl.q\_\’.ﬁn+f3v,nﬁ.nn+yﬁ7.nw.€€+( 1-y)
[V 6 gn ]+ (W W g H W W g
W W g+ W W gy HEW W

W.gq]}=0 (25-¢)

Where d|=(1-¥)/2 and  d,=(1+¥)/2

Equations (25-a), (25-b), and (25-¢)
represent the final form of the plate
equations of motion in a non-dimensional
form. The form of these equations is
general see Ref [1] and Ref. [14]. The
assumptions made in the previous
formulations are based on thin plate theory
and for plates under large deflections, the
middie plane strain must be considered.
The applied lateral loads considered are
those due to aerodynamic loading and
cavity effect. These loads represent the
coupling between the elasticity parts of the
problem with the aerodynamic parts due to
flow over the plate and cavity beneath it.
The nonlinear part of the problem
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represents the membrane forces induced due
to large plate deflection. This term Jimits the
amplitude of the fluttering motion of the
plate. Other terms corresponding to in-plane
joading witl have either stabilizing or
destabilizing effects depending on their signs
in the equation. Finally, the damping had
been represented by the coefficient of wr.
This coefficient represents the aerodynamic
damping and can alsg include the structural
damping of the plate.

HI. Flutter Analysis

Galerkin's method is used to reduce the
obtained equations of motion to a set of
nonlinear ordinary differential equations
having the non-dimensional time variable
as an independent variable. The
displacement u, v, and the deflection w are
expanded in the form of a generalized
double series of modes. These modes
satisfy the appropnate geometric boundary
conditions of the plate. The assumed
displacement solution may be taken as:

PENDSS, UmnmX‘“’m@)Y""n(n) (26-a)

m= ] n—
Ve _z;ymn(z)x“"m@)v‘“’n(n) (26-0)

W)= zzwm(r)x“”’m(&)v“"’ () (26-c)
S5

in which X(E,) and Y(n) are the modal
functions that satisfy the boundary
conditions imposed on T, ¥, or W in the §
and 7 direction respectively. It is also
necessary that these modal functions
constilute a complete set of functions over
the plate 0 < & 1 <l so that any
continuous functions T, ¥, or W satisfying
the geometric boundary conditions of the
plate can be approximated uniformiy by
an expression of the form given above.
The series (26-a, b, ¢) for u, v, and w are
.substituted into the equations of mations
(25-a, b, ¢), and the resulting expressions
are multiplied successively by the
corresponding moedal functions and then
integraling over the surface of the plate.
The modal equations obtained in this
manner allcr manipulating appear in (he
following tensorial form:

mn_ mnrs_

Al%+A2V +A3 W, W=0 (27-a)

mn— o _ mors __

BlLV +B2 1] B3 w W=0 (27-b)

ij mn j o mn
d" 'w +AdC] W+;\ﬂcz W xcdﬂ"w +

C4 W ngt ’+n€"‘“}csw {0, "Vt

m

”‘“}csw +C? U W+
ij i P

VW C9 W W W =0 (27-¢)

mn - lp

mnl

The veciors U (1) and V (1) are
computed from equations (27-a) and
(27-b)  algebraically and  then
substituted pinto equation (27-c) to
yield the Duffing-type equation in the
following form:

ETW 42 CIW+ EIW & AU s

ij Mo ij e

0P} C8 W, (A0 + 0, AP CS W+
Yy Y
m . mn — mnlprs— — -
2aCO WACT W 1T W W =0 (28)

This  tensorial  nonlinear  ordinary
differential equation represents a set of
(ixj) nontinear ordinary differential
equation which can not be solved
exactly.

I11.1 Displacement Functions and
Boundary Conditions

The procedure presented above s
general and can be applied for any thin
flat rectangular plate with various
boundary conditions. To complete the
solution, the boundary conditions for
the plate must be specified. For the
purpose of comparison with the result
obtained by the experimental reports,
see Ref. [15 ], the boundary conditions
are specified to be clamped all around
with no in-plane movements, so that the
out of plane boundary condition is
fully-clamped and  the in-plane
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boundary condition is edge-fixed, and
these conditions are written as:
wEwg=u"=v"=0

at both x=0 and x=1 (29-a)
w=wy,=u"=v"=0
atbothy=0andy=1 (29-b)

And the modal functions are given by:

XY(€) = X m(€) =sin(m &)  (30-a)
YO, =YY m)=sin(nrn)  (30-b)

While: X™n(E)=coshanE—cosamé~

Ym(sinhauE—sinamt) (30-c)
and: Y™ (m)=cosha.n—cosaan—

Ya(sinh o n-sina,n) (30-d)
where a,, and vy,, are the coefficients for
the m" flexural mode and can be
calculated from the following equation:
cosh o €S am = 1 (31-a)
cosham—C0SOmE—~Ym(sinhay,—sinay,)=0 (31-b)

The values of these coefficients are given
in Table 1. see also Ref. [16]. Once the
displacement modal functions are
specified for the prescribed boundary
conditions, the coefficients of integration
represented by the matrices Al to A3, Bl
to B3, Ct to C9, and T can be calculated
numerically. The number of the terms in
the assumed displacement series solution
given by (26-a), (26-b), and (26-c) are
arbitrary. As the number of terms
increases the obtained results will be more
accurate. The limiting factor in this
process is the computer time (cpu time),
which increases dramatically as the
number of terms in the series increases.

II1.2 Harmonic Balance Method

Since an exact solution of equation (28) is
not available, an approximate solution wiil
be obtained by the method of harmonic
balance. This method is used to seek a
periodic solution. The existence of such
solution indicates the occurrence of self-
excited vibrations of the limit-cycle type.
The method also yields the characteristics
of the vibrations such as the frequency,
amplitudes and phase angles, and it can be
used to study the effect of parameters on
plate behavior. In the frequency domain
the differential operator d/dT is replaced

by jw and, consequently, the system of -
nonlinear differential equations s
converted to a set of nonlinear algebraic :
equations. When this set has a solution
with real positive values of frequency
and amplitude and real values of the
phase angles, it indicates the occurrence
of limit-cycle oscillations of the
specified form. Since the experimental
results, see Ref. [4], [15], [22], and [24]
show the response of the plate under
consideration during flutter to be
oscillating  harmonically at its
fundamental frequency, one seeks a
solution of the following form: _
Won (1= Amn sSin(@ 1+ Ppy,) (32a)
Where @), is considered to be zero.
Consequently:
Winn=Amn[COSPptjsinPmq]sin o (32-b)
Wmn,t=mAmnﬁcos(Dmn'
_ sin@Qpp)sinw;  (32-¢)
Winn =@’ Ama[ 0 Drnnt

jsin®pp]sinw,  (32-d)

_W_mnwrswpqumnArsqu {[cosDpy

cos® c05Dpq SINPrypn 5iNDs COsPpq
c0SPmn SinQyg sinPpq-SinPmy cOSP;s
5in®pq]-j [SinDmn SINDr SINDpg-COsPryq
co5Q;s SiNDpq SiNPmp cOSPrs CO5Dyq
c0sDpy sinds cosDpgl)sin’o,  (32-€)

Where, sin%o,% (3sincor+—3~sin3m,) (32-f)
The sccond term which is of higher
harmonic will be dropped out and:

3 e = % sin o (32-8)
Substituting Wya from equations (32)
into the Duffing type equation and
equating separately the real and
imaginary parts of the equations, the set
of 2(ixj) nonlinear algebraic equations
in the unknown variables given by (ixj)
amplitudes, ((ixj)-1) phase angles, and
the flutter frequency (wy) is obtained.
These equations are solved numerically
by the modified Newton- Raphson

algorithm.

sin

I11.3 Nonlinear Flufter Analysis

Flutter analysis is carried out with a
three terms (m=3) in the stream-wise
(x-direction) and three terms (n=3} in
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the. cross stream (y-direction) for the
assumed series solution which will be
suflicient for the convergence with
acceptable accuracy and cpu time, see Ref.
[21 ). In fact for plates with high aspect
ratios, the more (erms in the stream-wise
direction the more accurate will be the
solution, see also Ref. [17] and [18].

The dimensions and material properties of
the plate considered are shown in Table 2.
The flutter analysis is started by
specifying the flight conditions (the Mach
number "M" and altitude of flight), the
cavity parameter (volume beneath the
plate) represented by the nondimensional
parameter ., and determining plate
nondimensional lateral deflection W vs,
the nondimensional aerodynamic loading
Aa. These procedures can be repeated for
different  parameters  variation 1o
investigate their effects on the plate
behavior during flutter.

HI1.3.1 Determination of flutter boundary
The flutter onset condition is determined
experimentally by Ref. [15], [22], and
{24], as function of M, g, Ny, Ny, and the
secondary parameters. Since Ny was a
primary variable and had a strong
influerice on fluttcr, the boundary could be
approached by increasing either Ny and N,
or q while holding the remaining
parameters fixed. It is also found that the
transition from stability to instability
(flutter) may be best described as a change
from random to periodic motien
accompanied by a substantial increase in
the strain amplitude. It is noticed that there
is a gradual increase in the strain
amplitude as dynamic pressure s
increased from 200 to 600 psf. The strain
amplitude increase is  roughly in
proporiion (o dynamic pressure and is
caused by increasing wall turbulence in
the tunnel. When the aerodynamic
pressure, q, reached 650 psf, the strain
increased sharply, indicating that the panel
has become aeroelastically unstable. As q
changed from 500 to 600 psf the output
shows the emergence of a dominant
frequency component and also begins (o

exhibit a beating characteristic. Just
above the flutter boundary, the
randomness disappears and the wave
becomes periodic.

A comparison between the results
obtained by the present work and those
obtained by Ref. [15], [22], and [24],
for the peak-to-peak panel displacement
vs the dynamic pressure at the middle
portion of the panel is shown in Fig. 2.
In this comparison the plate material
and dimensions are the same, while the
Mach number, M, is different. The
reason is that the Mach number used in

the experimental results is
{1.1<M<1.4}, which cannot be used by
the fineanzed quasi-steady

aerodynamic  theory, since it s
applicable only for Mach number
(M>1.6). The behavior of both the
experimental and theoretical results is
nearly the same, especially in the
fluttering region. The difference in the
critical flutter points in cach of the
previous comparisons, where the
critical aerodynamic pressure, (g, from
experiment is lower than that from
theoretical solution, is due to the lower
Mach number and the imprecise
clamped boundary conditions attained
in-the experimental procedures.

111.3.2 Effect of plate thickness

It is known that one possible way to
prevent flutter is to increase the plate
rigidity by increasing its elasticity
modulus or thickness. In Fig. 3 the
nondimensiona! amplitude vs dynamic
pressure for different thicknesses of the
plate are shown. [t is clear from the plot
that as thickness increases, the critical
value of the dynamic pressure, A,
increases. Another result is shown in
Fig. 4, for the variation of the
nondimensional amplitude vs the
change of thickness of the plate. From
these two plots it is clear that by
increasing the plate thickness it is
possible to prevent flutter by increasing
the aerodynamic loading critical value
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to higher values far from that at which the
plate will operate.

111.3.3 Effect of cavity

The air within the cavity affects the flutter
behavior of the plate. It has two scparate
effects on the panel modes and
frequencies. The first effect is due to the
compressibility of the air which acts as a
spring and stiffens the plate. The second
effect is that the cavity pressure increment
due to the plate motion may cause an
appreciable change in the natural
frequencies of the plate. The change in the
frequencies may consequently alter the
stability boundaries of the plate. This
effect is largest for the fundamental mode
and less for the higher symmetrical
modes. The second effect is due to the air
acting as additional mass which tends to
lower the panel frequencies in all modes.
In some experimental work by Ref. [9], it
is noted that the result for the two cases
(with and without cavity) differ
significantly, that the fundamental mode
frequency was raised to such an extent as
to be difficult to be located. Fig. 5 shows
the change of the flutter frequency vs the
change in the cavity depth. It clear that as
the depth of the cavity decreases the
frequency is increased. Fig. 6, shows the
change in frequency ratio, o, vs the
change in the cavity depths for different
density ratio, pe/pw,. It is noted from this
fipure that the change is sharply
decreasing in the region (I) of small cavity
depths and starts to be negligible for
higher cavity depths in region (lI).

111.3.4 Effect of aspect ratio

This section is to investigate the effect of
aspect ratio on the behavior of the plate in
the fluttering region. Different aspect ratio
(3<f<5) are considered. In Fig. 7, is shown
the non-dimensional amplitude w vs the
non-dimensional aerodynamic pressure A,
for different aspect ratios. It is clear from
the plot that as the aspect ratio increases
the critical aerodynamic pressure will
_increase while the limit cycle amplitude
will decrease. In Fig. 8, is shown the

change in the three dominant modes (as
shown in Fig. 9, Fig. 10, and Fig. 11)at
a specific value of aerodynamic
pressure in the flutter region vs the
change in aspect ratio. The sharp
changes in the modes at certain aspect
ratios about (2.75) and also (6.5) are
predictable. It is clear from Fig. 7. and
Fig. 8, that as the aspect ratio is
decreased or increased the critical
aerodynamic loading is also decreased
or increased as a consequence, and
because in Fig. 8, the aerodynamic
loading is fixed at the value (q, = 300
psf), the sharp changes are due to the
change from the flutter regime to the
pre-flutter regime. In fact, it is noted
that during flutter the dominant mode
for the plate under consideration (f =
4.75) is the mode (2,1) as shown in Fig.
10, while the dominant mode for the
same plate in the pre-flutter regime is
the mode (1,1) as shown in Fig. 9. It is
to be concluded that when (flutter
begins, a mode interchange occurs, and
this was investigated experimentally by
Ref. [15], [22], and [24], at the
transition from stability to instability
(flutter). In fact it is not necessary that
the mode (2,1) to be the dominant mode
for all aspect ratios, where for example
in case of square plate mode (1,1) is the
dominant  one during  flutter.
Consequently, care must be taken when
initializing the initial guess for solving
the nonlinear algebraic equations.

111.3.4 Effect of damping

Two types of damping are considered in
the previous formulations and are
included in the total non-dimensional
damping parameter Ag. The first is the
aerodynamic damping X, and the
second is the structural damping A,
given by:

Aa 28" —Ez—-ﬁz'l ® (33-a)
d ﬁDT( r
Ao = 02 o, (33-b)
Dn
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is assumed constant structural damping for
the " mode.

W w
and, 8 =28 - =285,

is the equivalent structural damping and &,
is the critical damping ratio of any mode
with frequency w,. Since, during flutter,
@, 1s constant for all modes and in this
analysis it is assumed that damping
coefficient g, for any mode o, is related to
that of the fundamental mode @, by the
relation given above, we will assume that
gn = g1 = 0.03, which is commonly used in
flutter analysis see Ref. {19] and [26].

It is a well known fact that structural
damping can significantly modify panel
flutter boundaries. It always has a
stabilizing effect on a fluttering plate. Fig.
12, shows the limit cycle amplitude vs the
dynamic pressure for different values of
the structural damping Ay Also Fig. 13,
shows the effect of the aerodynamic
damping A4 on the limit cycle amplitude
vs dynamic pressure see Ref. [23]). From
the two Figures, it is clear that both types
of damping can enhance the behavior of
the plate during flutter. It is also obvious
that the structural damping has a greater
influence than the acrodynamic damping.

I1L.4 Linear Flutter Analysis

In linear analysis the problem of panel
flutter is an eigenvalue problem in which
the eigenvalues are obtained for a given
value of the non-dimensional acrodynamic
pressure A, [t is to be noted that in linear
analysis thc cpu time reduces dramatically
so more (up o six} terms can be taken in
both x- and y-directions. Fig. 14, shows
that with the increase in the value of A,
the two natural frequencies coalesce to the
critical eigen-value (@) at a value of (A2 =
% o« ) and then becomes a complex
conjugate pair for any value of Ay > As o,
see Ref. [20]. Hence, the stability critena
adopted here is that the critical non-
dimensional dynamic pressure X, o 1S
considered to be the lowest value of A, at
which coalescence occurs among all
values of limit cycle amplitudes
corresponding to the linear case. In the

absence of the aerodynamic damping,
the flutter boundary corresponds to A ¢
When the aerodynainic damping is -
considered, the value of A, ; increases,
and the extent of its increase is
calculated from the panel response
parameters. For Xy < A, 4, any
disturbance to the panel decays, and the
amplitude tends to zero, while for &, >
Aa o, @ limit cycle oscillation exists, and
the amplitude increases as A, increases,
As the aerodynamic pressure increases
beyond flutter onset, the fundamental
flutter frequency (or limit cycle -
frequency) also increases. It is to be -
noted also that the experimental flutter
frequency is less than that calculated
theoretically. For example, the flutter
frequency obtained experimentally by
Ref [15] and [30], is 145 Hz while the
calculated one is 173 Hz for the same
plate material and geometry and for the
same conditions of loading. Actually
the plate in experiment is clamped to a
frame shown in Fig. 15, which is elastic
and in this case the plate is elastically
supported. The boundary conditions in
this cace are such that uniform
rotational restrains on opposite edges
are provided by a restoring moment
which is proportional to the edge angle
of rotation, while the transverse
deflection on all edges is zero. The
boundary conditions are:

%%Iv K %2;=0 and w=0 at £=-1/2 ™

Fw
a_a‘”k“"w =0 and w=0 at £=+1/2

o,

ny ar]
i%}ukmﬁ—o and w=0 at q=+1f2J

> (34)
=0 and w=0 at n=-1/2

Where ke and ke are the spring
constants of the rotational springs on
the boundaries £ = + 1/2 and £ = - 1/2
and 1 = +1/2 and n = -1/2, respectively.
In linear analysis this problem is solved
by assuming beam eigen-function in the
n-direction and then solving the
differential equation exactly to get
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symmetric frequency equations. Then, by
choosing approximate values for the
spring constants we can determine the
natural frequencies of the plate. The first
eight natural frequencies of the plate are
calculated and shown in Table 3, for the
cases:

- Clamped all around.

- Simply supported all around.

- Elastically supported all around.

- Experimental results.

Although we get exactly the same values
of the natural frequency of the plate as
those from the experiment, it is tedious to
consider the case of elastically supported
boundary conditions for a nonlinear
analysis.

IV. Conclusion

The following conclusive statements can
be summarized based on the investigations
and results obtained.

- For thin plates, where the deflection is at
least of the same order of magnitude as
the plate thickness, the nonlinear thin
plate theory must be wused. The
nonlinearity, represented by the plate in-
plane (membrane) forces created due to
large deflection, is the main source that
causes the amplitude of the plaic
deflection during flutter to be limited
(limit cycle osciliation).

- The accuracy of the result depends on
the number of terms in the assumed series
-solution. For plates with high aspect ratio
and when the direction of the flow is
parallel to the longitudinal direction, the
more terms in that direction, the more
accurale the obtained results. It is found
that using three terms in both directions
gives good agreements with the
experimental results.

- In case of linear analysis, where
formulation. is more condensed and cpu
time decreases dramatically, more terms
can be taken in both directions for more
accurate results. In fact, linear analysis
may be used for rough estimation of the
flutter point. It is also used to account for
the complicated support conditions,

which is tedious to handle in nonlinear
analysis.

- The effect of different parameters
(like cavity pressure, structural and
aerodynamic damping, plate thickness,
and in-plane loading) on flutter point
were studied separately. There is good
agreement, between the results for
these variations obtained here and
other existing results in the field of
flutter analysis. The most important
parameters, that have great influence
on the onset of flutter, are found to be
the plate thickness, the in-plane
loading, and the structural damping.
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Fig. 1, Geomelry of the Plate with
Axes System
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Table 1, Values of an, and ¥y, in the Beam
Eigen function or a Clamped Plate.
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Table 2, Dimensions and Properties of the Plate

Length (m) 0.7620
Width (m) 0.1778
Thickness (x 10~ m) 0.8128
Young's Modulus (x 10’ N/m?) |~ 72.398
Shear Modulus (x 10” N/m?) 27x10°
Poisson's Ratio 0.3300 |
Density (x 10° kg/m’) 1.6189 |
Coefficient of Thermal 11.700
Conductivity (pm/m.k)

Loss Factor 0.0050 |

Table 3, Experimental & Calculated Plate
Frequencies for Different Boundary Conditions

Clamped | Simply | Elastically | Experimental
Supported | Supported Result J

158 72 130.9 128
165 82 1385 | 136-142
178 99 160.2 | 154-161
198 123 | 1819 | 173180 _
225 154 | 2006 | 198-206 |
260 192 | 2169 | 216-228

302 236 261.5 262-275
362 288 308.0 310-324 ]




