Mansoura University
Dept. of Electrical Communications
and Electronics
Communications Theory 1
(COM9311)

Faculty of Engineering Third year 3 hours exam Final Exam Jan. 2014

Two pages Exam

Answer the following questions
All drawing should be drawn to scale with appropriate numbers if available
Assume any missing data, and make your assumptions clear
Use a carrier frequency of 900 MHz unless other values are given
Please answer each question at the beginning of a new page
Don't use red colors in answering

100 points

- Q1) Draw a block diagram for digital communications system, explain its operation, and what are the advantages of digital communications system over analog communications system? (10 points)
- Q2) Find the exponential Fourier series and spectrum for a periodic square wave that equals '1' for $t \le |\tau|$ and 0 otherwise where $\tau <$ the signal period T. (10 points)
- Q3) design an AM broadcasting station with a total transmission power of 1000 Watts and a modulation index of 75% for tone modulation. For you design, estimate
 - (a) Average power of the modulated signal
 - (b) The station efficiency
 - (c) The peak amplitude of the output signal applied to 50 Ω antenna
 - (d) If the carrier power is kept constant and the total power is increased to 1100 Watts, what is the modulation index? (20 points)
- Q4) With the aid of vector diagram compare between NBFM and DSB-LC

(10 points)

- Q5) A 100 MHz carrier is phase modulated by a sinusoidal signal f(t), the peak phase deviation is 2 radians, when the peak input amplitude is 3 volts. Find the ratio of the average power in the carrier to that in all sidebands excluding carrier and the bandwidth for each of the following cases using Carson's rule:
 - a) $1.5 \cos 2000 \pi t$
 - b) 6 cos 400πt
 - c) 9 cos 6000πt

(15 points)

- Q6) draw block diagrams for T.R.F and superhetrodyne receivers and explain their operations. State the advantages and disadvantages of each. (10 points)
- Q7) Design an Armstrong indirect FM transmitter to generate FM signal with carrier frequency of 98.1 MHz, Δf =75 KHz. A narrowband FM is available at a carrier frequency of 100 KHz and a frequency deviation of Δf =10 KHz. The stock room has an oscillator with an adjustable frequency in the range of 10 to 11 KHz, and plenty of frequency multipliers. (15 points)

Q8) For the following circuit, $v_2(t)=a_1v_1(t)+a_2v_1(t)^2$ find:

a) Determine the spectral content of the output signal $v_2(t)$

(10 points)

b) How to generate AM signal from the output signal $v_2(t)$

(5 points)

TABLE A3.1 Table of Bessel Functions^a

		$J_n(x)$							
$n \setminus x$	0.5	1	2	3	4	6	8	10	12
0	0.9385	0.7652	0.2239	-0.2601	-0.3971	0.1506	0.1717	-0.2459	0.0477
1	0.2423	0.4401	0.5767	0.3391	-0.0660	-0.2767	0.2346	0.0435	-0.2234
2	0.0306	0.1149	0.3528	0.4861	0.3641	-0.2429	-0.1130	0.2546	-0.0849
3	0.0026	0.0196	0.1289	0.3091	0.4302	0.1148	-0.2911	0.0584	0.195
4	0.0002	0.0025	0.0340	0.1320	0.2811	0.3576	-0.1054	-0.2196	0.182.
5	********	0.0002	0.0070	0.0430	0.1321	0.3621	0.1858	-0.2341	-0.073
6		***************************************	0.0012	0.0114	0.0491	0.2458	0.3376	-0.0145	-0.243
7			0.0002	0.0025	0.0152	0.1296	0.3206	0.2167	-0.170
8			*********	0.0005	0.0040	0.0565	0.2235	0.3179	0.045
9				0.0001	0.0009	0.0212	0.1263	0.2919	0.230
10				-	0.0002	0.0070	0.0608	0.2075	0.300.
11						0.0020	0.0256	0.1231	0.270
12						0.0005	0.0096	0.0634	0.195
13						0.0001	0.0033	0.0290	0.120
14						******	0.0010	0.0120	0.0650

Good Luck Sherif Kishk