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1. Introduction

Suppose that we are given a multiparameter system of equations,

L(A)x = f(A.x,....,x,) (1.1)
n
Ll(_‘A'_)zAI_ZA'BU’ l:l ..... m m=<n

where A, B, are bounded self-adjoint operators on Hilbert

spaces H, | = 1, . . .,mand }vj,j =1, ...,n are real paramters. An
eigenvalue of (1.1) is apoint A =(A,,...,A,) for which each equation
possess a solution X; # 0 . The spectral theory of multiparameter

system of the case m=n has been considered in many recent papers,
see e.g. [1.6.8] for abstract problem and in [2,3,4,5] for a linked
svstem of non-liner second order ordinary differential equation. In this
paper we are concerned with the problem of bifurcation of solutions of
the non-linear problem (1.1) at a generalised simple eigenvalue of the
linearised problem for the case m < n. The result is obtained using the
concept of generalised simple eigenvalues that we have introduced in
[7]. Using this concept we also invstigate the multiparameter

eigenvalue problem in the case where some of the operators depend
analytically on a perturbation parameter. The distribution of this paper

1s as follows:
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In section 2 we give our definition for the generalised simple
eigenvalue. In section 3. Theorem 3.2, show that, under some standard
conditions on the nonlinear terms, (1.1) has a set of solutions
bifurcating from the trivial solution (A,0) e R" x X at such generalised
simple eigenvalues. Theorem 3.3, gives the same results when some of
the operators depend analytically on perturbation parameter.

2. Definition of a generalised simple eigenvalue

Let x v be real banach spacesandleta, B,,i=1,...,nbebounded
linear operators from X into Y. Consider the following problem

L(A) x+N(A,x)=0 2.1
where

L(A)=A- iijj (2.2)

=1
and A =(A;,...,A,) €R"

In [7] we have introduced the following definition of a
generalised simple eigenvalue.
Definition 2.1
,A"’=(?\.°1',....‘,.7L°n).efRn is a gteneralised simple eigenvalue for

(A,B,,...,B ) if;

(ydim N(L(AD=L
(i) L(»°) is a fredholm operator of index 1-m where m<n ;

(i) B;x, € R(L(A")), i=1..,n where

x, eN(L(A7))
and Y =span{B;x,, i= L...n}@ R(L(A)).

By using detinition 2.1 we have proved in [7] the following result.
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' THEOREM 2.2

Let A’ € R " alised simple eigenvalue of (2.1) and let NR" x X > Y
be a non-linear mapping such that :

CI:NeC'(R"x X,Y) ,r22;

C2:N(2,0)=0 ;

C3: D N(yp )0 =0
where

Lm:(ll,...,lm), Em:(Lm'FI""’—A-'ﬂ)‘

Then (A°,0)e®"x X 1sa bifurcation point of solutions of
(2.1) and there exists a set of solutions

{3 %) = (Mg (U1 )l )X (U 1))
ue(-86,8)c?R for some 8 >0;

”Em *E:n”<5 for some ¢ >0}

where
AL Rx R R and

X" R x R X
are C™1 mapping.

We shall use the results of THEOREM 2.2 to study the linked system
(1.1).

3. Linked Multiparameter Eigenvalue Proplems
Consider the system

M (Ax): = (A =Y B)x —f(hx) = 0
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i=1...m;, m<n where x=(x%,,..,X,), X, €H A B,
are all Hermitian ( bounded and self-adjoint linear operators) and
f :R"xH, — H, is a non-linear mapping.

m . . . . .
Define x = x g, which is an inner product space when given the inner
1

1=

product.

m

(X>Y):Z (xi>Yi)Hl. >Xi>Yi GHi‘

i=1
It is clear that x with this inner product becomes a Hilbert space.
Follow binding [1] (see also [7]) we define the following operators:

AX —->X ; Bj:X - X, J=1,...n

where
Ax = (A X, ApXn )
Bx=(ByjX,sBmjXm);

and
f(h.x) = (£, (&, x),..., {1, (A, X))

The svstem (3.1) is then equivalent to the single problem

M(A.x):=w(d)x-f(A.x)=0
where

W(A):=A - AB;
i=1

With this notafions, we obtian the following result :
LEMDMA 3.1

Assume that for A =A4" e R" each of the linear problem in the system
(3.1)  has exactly one llinear independent solution
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X{, i=L..,m ;R(L; (L) is closed and the matrix
S(x")=S(x},....x5) = ((Byx{,x{)),i=L...m;j=1,...n

is such that all the determinants of order m not equal zero. Then the
equivalent equation

wx=(A- A,B)x=0
J=t

satisfy the following :
() w(L)is a sel-adjoint operator for all A € Rno

(i) w(A°)is a fredholm operator with zero index;

dimN(L(X"))=m where
N(L(X")) =spen[Cy,....00 LG =(0...0,x] ,0..0)

and
Y, = R(L(A")) =[spen[§;.....C 11"

(1ii) B_ix"'eYl;x":(XT,A..,X;),jil,...,n
and
dim Y,=m<n where
Y, =spen [Bx",...B,x’]
Hence X=Y, @Y,

PROOF:

(Dand (i) are easy and we shall prove (iii). since all the determinant of
order m not equal zero ,then for each j there exist
(Bjx; .x{)=0—>(Bx",{)=0—> Bix" Y,
Also,since rank S(x°) =m <1, then dim Y, =m dim and hence :
X=Y 2Y, |
This lemma is exactly the result of [8] for the case m=n
We also note that X has the following direct sum
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X = Xo @ Xl
where
X, =spec(x’)

o L
and X, =[spen(,,..Gl]
For the non-linear equation (3.2) we have the following:

THEOREM 3.2

Let A°e€R"™ be as in lemma 3.1 and let
fi;‘R”x X——>Hi,i:1,...,m
satisfy; '
Cl f; eC"(R"x X,H;),rz2
C2 £(.0=0 VYV A e ®
€3 Dyfi((hn.p )0 =0

then (A°,0) =®"x X is a bifurcation point for solutions of (3.2) and

there exists a set of solutions

()= (A (i )R 3XT (Ut oo X (W)
ue(-8,8)cR for some &> 0}

- where
AL RxXRTTT > R
and RRTT > Hi=1,m
are c! mappings.
Proof:

The results follow by an application of the method of liapunou-schmidt

,as in [7] to fines solution of the form:
x=ux +x' where ueR x! eX,
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For the sake of completeness we will proceed with the proof, suitably
modified for our problem. let Q, and Q, and be the projections of Y

onto Y, and Y, respectively (see(3.4)). Then

M(A;x)=0 (3.6)
< QiM(2;x) =0 and Q.M(X;x)=0

the so called auxiliary equation and bifurcation equation respectively.
The auxiliary equation becomes

Qw(2)x; = Qf (A ) ux’ +x')=0 (3.7)
where
ueR x' eX,.

consider the mapping y : ! x R" ™ x R x X, - Y, defined by
V(An ,Emu,xl) =QwW(M)x; = Qif (Ay,p_),ux" + x)=0
Using C2 and C3 we obtain

WAy, u .0,0)=0,
Dy v (.00 =Qw(dY).
since Q;W(X") : X,—y, is a bounded linear isomorphism, it follows
from the implicit function theorem that there exists a neighborhood

U c ®™xR"™x R of (Ay,.p°.0) and a unique  mapping
x" eC(U,X,) such that
BLIEN ] -
X (g p 0) =0
and
Wikn N .u.X]* (Lm N ) =0

i.¢ the auxiliary equation (3.8) is satisfied .since ,by C2 (L;‘Qp:’n,o.o)
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satisfies (3.7) and by the implicit function theorem x*is unique it
follows that ‘

Xyt 0)=0 Y (Rt [0) €U
Differentiation of (3.9) with respect to u and using C3 and (3.10) gives
Q) Wk . IDx" (et L0) = 0.

Since for J; _,°. sufficiently small Q, W(r, .u" ) is a bounded linear
-1 Q W ott])

isomorphism of X onto Y1 we can conclude that
Duxl*(&m»}f:‘,’o) =0 for ”&m - &mN sufficiently small

Differentiating (3.10) repeatedly with respect to B gives

k * o
DY x""(Rpopt,0)=0, I<ks<r.
Using (3.10) - (3.12) we see, from Taylors theorem

~> 0.

xl*(?:m,_}fm,u)zoduf + |yl “Em 'E:n”) as |ul . “Em —-E:n

1% 1% 1%
where X (Ayn w)=(x (}_m,Em,u),...,xm(&m,_}{m,u)),
The bifurcation equation becomes

QWX + X' G pt W) =~ Quf (Rt X + X" G 1) =0

n

m o
= w0, ~ADBY -t SO -ADBX —u T (=B QNN (Rt W)

j=1 =1 j=m+i

~ Qg o = X(Agy W) =0 (3.13)

Using the basis vectors B.x".i=1... m the bifurcation function
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is defined by

F=(F. ,F.) ®"xR""xR-> R"

m

_Z Gj(Lm,Em,U).
j=1

m m

21 Fi(Ag,p_>u) Bj-x"’::—uz1 (A; —A5)Bjx"
j= i=

where

m n
2 Gyttt s W)B = Q. {u Z(}."j-—kj)Bjx°—W(l)xh(&m,gm.u)+f((;m,gm),ux°+x"(2_.m,;~1m u)}

)= j=m+l

thus
F(z\im>_,‘:"_m=u) = _u(_}.“.m ——_}‘.:n) - G(z:m ’Em’u)
where
G=(G,,...G,) : R" KRITMAkR S RT
satisfies

G(Lm ’Em‘o) =O3

so that
D G(Apy.p .0)=0, lsk<r
and

D, G(ky.p .0)=0.
It follows that
G(Amop »0) =uG(dy.p -0)
where

GeG (R R ER K™,

and the bifurcation equations reduces to

H g, 0= —(hy — A5,) =GRy 0) =0

now,
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G(2syp,0)=0 and D, Glkp, 45,00 =0
so that '
H(.z::n :E’_:n 90) =0 and Dl_m H(&;’E; 70) =-ldm

where Idm denotes the identity mapping on R"

Therefore, by the implicit function theorem, there is a
neighborhood VC go-m . & of (u° .0 and of and a unique function

A €CTI(V.R™) such that

HO(p w)=0 V¥ (g weV
and

Gy = s +0 o] g, - |
The (3.5) has non-trivial solutions

(AL (Em’u) ST M poou) eR"x X:(p_.u) eV
where »
AL (s w) = +0 Cfu+] i, w0
and ,
pou) = ux’+0 (fu’ + ful “ B, R ii)

RE
s I( —m

as il po-p “ ] =0

We also have the following result on linear perturbation of the system
(1.1) and the proof is again as Theorem 3.2.

THEOREM 3.3
Suppose H, . i=L..k are Helpert spaces A (g),B;(g) : H; = H; a¢
bounded self-adjoint linear operators ~ continues  in

g(or C" resp analytic); ¢eC' ior ¢ in an open neighborhood of
0eC' If A=A W™ issuch that each of the proplems in system (3.3)

has a solution x; =0 and the conditions of LEMMA(3 1) are satisfied,
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then there is a constant ©6>0 such that for

e=C fe] <3, lu _,,L°”<5 there is a bifurcation i.e
- coR fi~-m —
solutions (&, (e, )1 )X (8,1 )) of the system

n
(AE) - LA A;(ENx =0  i=l.,m
j=1

34} ¥ L} L} _ B o _ o * E . -
wiii (,\‘m(Oag’_ )-Em)“(?"_maﬂm)—& ,X (O’Em)—x
The functions .~ (g,u ).x"(g.u_) are continuus in g(or C" resp analytic)-
=mi=r gy =Tm
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