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Local Similarity Solution Of The Free Convection From A Loug Vertical Cylinder
Embedded In A Darcian Fluid-Saturated Porous Medium
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Abstract [a this work. local similarity solution is obtained for free convection from a long cylinder embedded
in a fluid-saturated porous medium. The cylinder wall is maintained constant. The free convection along the
cylinder is described by cootinuity equation, momentum equation in axial direction. momentum equation in
radial direction and energy equation. These governing equations are expressed in cylindrical coordinazes.
Defining new proper independent and dependent variables, the governing equations are transformed to
dinsensionless form. Since the propused solution is restricted o the case of long cylinders, the derived
dimensionless governing equations are ordinary differential equations of the boundary value problems type.
They are solved numerically using Runge-Kutta method accompanied widh shooting technique. Newton-
Raphson method of non-algebraic equation is used to carry pul the shooting technigoe. Solving these equations
a different positions along the cylinder, temperature and velocity distributions are obrained and hence the
values of local Nusselt pumber are calculated for Rayleigh number of [, 5, 10 and 20. Because of the
application of Darcian model. in this work, the oblained results are valid only for the case of porous medium
of small permeability.

1. Introduction

Natural convection heat transfer in a fluid-saturated porous media is of great interest
because of its numerous practical applications. Thermal insulation, chemical reactors,
underground spread of poliutants and geophysical problems are examples of these
applications. Hsieh et al. [1} reported a nonsimitarity solutions for mixed convection from a
vertical flat plate embedded in a porous medium. Both surface heating-conditions of variable
wall temperature and of varable heat flux were studied. Correlations for local and average
Nusselt numbers were presented. Non-Darcy mixed convection along nonisothermal vertical
surfaces in porous media was studied by Chien-Hsin et al. (2], In this work, entire mixed
convection regime is covered by a single parameter. A finite difference scheme was used to
solve the transformed system of equations. Mixed convection from vertical cylinder embedded
in a porous medium was studied by Aldoss et al. [3]. Noosimilarity solutions are obtained for
the case of variable wall temperature and variable surface heat flux. The effect of characteristic
parameters of the problem on heat transfer is investigated.

Natural convection 1 a porous medium is a point of interest for many investigators.
Non-darcy natural convection around a horizontal cylinder buried neas the surface of a fiuid-
saturated porous medium was studied by Christopher et al. {4]. The governing equations are
solved numerically to obtain the flow field and the temperature distribution around the
cylinder. Local and average Nusselt numbers are expressed as functions of cylinder depth, the
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modified Rayleigh pumber and Darcy number. Leu and Jhn-Yuhjang [5] studied natural
convection from a point heat source embedded in a non-Darcian porous medium. Local
similarity and modified Keller’s Box methods are employed. Natural convection heat transfer
between two porous media separated by a vertical wall was studied by Higuera and Pop [6]. In
this work, the problem of coupled heat transfer by natural convection between two fluid-
saturated porous media at different temperatures separated by a vertical conductive wall is
investigated analytically and numerically, taking in account the two-dimensional thermal
conduction in the separating wall. Higuera [7] studied the conjugate beat transfer across a thin
horizontal wall separating two fluid-saturated porous media at different temperature. Natural
convection heat transfer from an isothermal vertical surface to a fluid-saturated thermally
stratified porous medium was studied by Angirasa and Peterson [8]. They presented the results
of a numerical study of natural convection heat transfer in a stable stratified, fluid-saturated
low porosity medium. In this investigation, the boundary layer approximations are described
and a wide range of ambient thermal stratification levels are considered.

In the present work, attempt is made to obtain a local similarity solution for free
convection from a long constant wall-temperature cylinder surrounded by a Darcian fluid-
saturated porous medium. According to the presented solution, the problem parameters are
reduced to single characteristic parameter; the Rayleigh number based on the cylinder radius.

2. Description of Mathematical Model

The description of the problem and the coordinate system used to investigate the free
convection induced due to hot embedded cylinder in a fluid-saturated porous medium is shown
in figure (1). The problem is described by the differential form of conservation laws of mass,
momentum, and energy in cylindrical coordinates. It is proper to consider the flow to be
axisymmetric and accordingly, the tangential component of the velocity and its derivatives
vanish. Moreover the derivatives with respect to angular displacement also vanish. According
to the foregoing assumptions, the governing equations of convective flow can be written as
the following;
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where K and u are the permeability of porous medium and dynamic viscosity; respectively. p,
p, a and g are the pressure, density, thermal diffusivity and gravitational acceleration;
respectively. Volumetric-averaged radial and axial velocity components and temperature are

denoted as v, , v. and T; respectively. The physical properties of the medium are assumed to
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be isotropic and both fluid and solid matrix of the medium are assumed to be in thermal
equilibrium [9], In energy equation (4), the conductive heat inaxial direction is neglected
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Figure (1) Physical description of the problem

compared with that in radial direction. This assumption is valid in case of long cylinder {
length of the cylinder >> its radius ). To eliminate the pressure, equations of motion (2 ana 3)
are differentiated with respect to z and r; respectively and with some manipulations, they can
be reduced to a single eguation;

dv. _dv. _Kgip (5)
gr z u o or

One can use the definition of the coeflicient of thermal expansion /2

7
taking in account Boussineq approximation to modify the equation of motion (5) to;

dv. dv, Kgh
ar dz v
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Equations (1, 4 & 6) are the governing equations of the problem, they must satisfy the
following boundary conditions;
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Moreover, one can define the stream function  suchthat it sarisfies the continuity equation
(1). Accordingly y is defined as;

1 12
==t awmt = 2K Q
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Substitution with {7) in equations (4 & 6) leads to;
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Equations (8-9) must satisfy the following boundary conditions;
at r = Ty c,‘w = ““‘K =0 * T = To :
ér éz
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at r — ® -;5— = 0 : r=T, (10)

In medified momentum equation (8) the second derivative with respect to z is
neglected. This carried out simplification is seams to be reasonable because the height of the
examined cylinder is long enough such that this derivative is very small compared with the

a2
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derivative with respect to r ( 2 l';/ << ry: . Solving eguations (8-10), the physical
2 g

quantities of interest can be evaluated such as velocity, temperature distribution and Nusselt
number. Local Nusselt number is defined according to the following relations;
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where Nu. and g, are local Nusselt number and heat flux at the cylinder wall. In order to put
the governing equations (8-10) in dimensionless form, the following dependent and

independent variables are proposed,
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where 77 , f and & are the local similarity variable, dimensionless stream function and
temperature. Accordingly the dimensioniess form of governing equations (8-10) can , with the
aid of refations {12), be derived as;

Nfw+ fy + 16 =20 . (13)
n, + 1+/) 6, =0 : (14)

where the prefix 7 denotes the differentiation with respect to 7. Equations (13-14) must
satisfy the foilowing modified boundary conditions;

an=n,; f=/,=0 ad &=1 ,
(15)

a §—o>o | 2=0 ,

where 7, is the value of the independent variable 77 at the cylinder wall, which is defined
as follows;

n,=r, Mz L"W i (16)

o vz Z

where Ra, is Rayleigh number based on the cylinder radius r, and is defined as;

K T,-T.
Ra, = gB T -L)r, a7
a v

Referring to equations (13-15), the problem variables ( fand @) are function of single
independent variable ( 7 ) whatever the value of = and r is. Besides 5, the value of it at the
cylinder surface { 1, ) is required to carmy out the solution of the governing equations.
Accordingly, the obtained solution is local similarity solution. Equations (13 and 14) are
ordirary differential equations of boundary-value problems type. These equations are solved,
numerncally, using the well known Runge-Kuita method for ordinary differential equations
accompanied with shooting method of boundary value problems. According to this technique,
eguations (13 and 14) are transformed to a set of six first order ordinary differennal equations.
These equations are solved, simultaneousty, at differeni values of », ( ai different positions
zlong the cylinder ). Solving the mentioned equations, one can obtain the dimensionless stream
function (f) and temperature ( &) and their derivatives as functions of 7 throughout the flow
field, Using equations (7,1tand 12) one can express dimensionless radial and axial components
of velocity { V. & V. ) and local Nusselt number Nu, as functions of , f, & according to the
following relations;

1 1
V,=v,/(%':E JRa__):-z—fﬂ_Ef .
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V,=v../tf~ﬁa?)= /, : (18)

N, /\/—R?, = =8, )

Where & by s the derivative of @ with respect to 77 at the cylinder wall. Ra. is the local
Rayleigh number based on z and is defined as;

Kgp(l,-T,) =
o v

Ra, =

3. Results and discussion

The dimensionless ordinary differential equations (13 and 14) were solved by Runge-
Kutta method accompanied with shooting method using Newton-Raphson method of non-
algebraic equations. The suitable step size of » was found to be 0.025 for ali carried out runs
and the proper maximum value of 5 comesponding to r — = was found to be 10. The

solution was carried out, separately, for different numerical values of 7,. Figures (2 and 3)
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show the dimensionless stream function ( f ) and its derivative ( f, ) versus #n at different
values of 7, ( at different positions along the cylinder ). According to the definition of 7,
equation (16) and for specified cylinder { r, = constaat ), the distance measured along the
cylinder z decreases as the vaiue of 7, increases. As it is clear in figure (2), the value of f is
higher with decreasing 5, ( and in turn; increasing z ). From figure (3), £, increases as 7,
decreases (z increases) until n~5.0. In general, fand /, increase with increasing 7. Figure (4)
shows the dimensionless axial velocity as it is defined through equation (18) against #. This
velocity takes an asymptotic value of 1.0 whatever the value of 7, is. Dimensionless radial
component of velocity as it is defined through equation (18); is shown in figure (5). This
velocity bas a peak-value, which increases for higher values of 7. Both the dimensionless
temperature & and its derivative 8, are shown in figures {6 and 7). They go to an asymptotic
value of zero for all values of 1.
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Figures (8-10) show the dimensionless axial velocity, radial velocity and temperature

r-r -
versus dimensionless radial position ( 2 : = qff ?L;? ) for different values of 7,
Dimensionless axial velocity [ see equation (18) | increases rapidly then gradually till it reaches
— ra

an asymptotic value of 1.0 ( starting from ~ 0.4 ).For all values of 7,, dimensionless

radial velocity has a peak at the same dimensiorless radial position of about 0.24 for all values
of 1, . From figure (10); the dimensionless temperature decreases rapidly till radial position of
0.2, there it decreases slowly till it reaches an asymptotic value of zero at dimensionless radial
position of about 0.4. In accordance, the thermal flow field terminates at this position,
thereafter the gravitational force is, solely, active. As it is expected, the flow starts to
decelerate till its axial and radial components of velocity vanish at the end of the hydrodynamic
flow field. This portion of hydrodynamic flow field is not considered in the present work ( see
figures (4,5,8 and 9).

Figure (11) shows local Nusselt number ( AN, / J_Ra_ ) along the cylinder length

(at  different values of 77, ). As 1, decreases Nusseit number increases and goes to infinity as
1, — 0. It decreases rapidly for smaller values of n, [ 5, = C(0.0) ], then it decreases
gradually. Using equations (16-18), one can derive dimensionless distance along the cylinder
(z'r,) and local Nusselt aumber based on . { Nu, ) as;
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Figure (12) shows local Nusselt number along the cylinder length at different values of
Rayleigh number Ra, Local Nusselt number Nu, has its maximum value near the bottom-end
of the cylinder, then it decreases slowly till it reaches its smallest value far from this end. At
the same position, Nusselt number increases as Rayleigh number increases. Table (1) shows
numerical values of local Nusselt number at different values of Rayleigh number.
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Table {1) Local Nusselt number Nu, for different values of Rayleigh number

Ra,= 1.0 Ra,=50 | Ra,= 0.0 | Ra,=20.0

M, 8y Doti Nu, z/r, z/r, 2/, 2/ 1,
07 3.3965 03397 100 500 1000 2000
0.25 1.8729 04680 16 50 160 320
(111} 1.2678 26339 4.0 20 S0 30
075 10395 0.779¢ 178 5.89 17.78 3536
10 0.9163 0.9165 L0 5.0 10 2.0

1é 0.7673 1.2277 83391 19531 20063 162041
2.8 0.7]41 14282 0.25 1.25 2.5 5.0

4. Conclusions

In this work the partial non-linear differential equations describing natural convection
in porous medium from long cylinder are transformed to a set of first order differential
equations, which are easier to be solved. Moreover, according to the present proposed local
similarity solution, the characteristic physical guantities, affecting the natural convection in
porous medium from long cylinder, are reduced to a single dimensionless guantity; Rayleigh

number based on the cylinder radius Re, .
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Pimensionless distance along the eylinder 7ite

Nomenclature
C . wi(r.z)
I dimensionless siream function, f(7)= R
g gravitational acceleration
K permeability of porous medium
k thermal conductivity of fluid-saturated porous medium, k= ¢ &, + (1- @)k,
kr thermal conductivity of fluid constituent
k thermal conductivity of solid constituent
D pressure
Ra

Rayleigh number base on cylinder radius, R, =K g S (T, -T,) r,/ia v
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g

~—
(2]

fu Pl By

Rayleigh number based onz, Ra. =K g B (7, -T.) =z la v
radial and axial coordinates

cylinder radius

temperature of fluid-saturated porous medium

temperature of cylinder surface

temperature of porous medium far from the surface

V. V. dimensionless radial and axial components of velocity
v,, v; radial and axial components of velocity

Greek symbols
a thermal diffusivity of homogenous porous medium, a=4 /p, ¢,
{ \ 1 dp
B coefficient of thermal expansion, f=- — —= )
perT’?
¢ porosity of porous medium, ¢ = pores volume / total volume
n local similarity independent variable, 77 = ,-JM
a vz
H#,v  dynamic and kinematic viscosity
é dimensionless temperature, (7 - T}/ (T, - T.)
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