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Computing Efficient Trajectories for Unmanned Air Vehicles
Jamal A.F. Azzam
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Abstract

Rapidly developments in the design and implementation of autonomous Unmanned Air
Vehicles (UAVs) make the use of them in combat missions a real fact in the near fulure. One of the
challenging problems yet to be solved is the real time planning of the optimal trajectory. Techniques
used for robot motion planning are implemented for UAV e.g. cell decomposition, road maps and
virtual forces. In these techniques a cost function consists of the threat cost and the length cost
with priority factors and weighting quantities for both. The optimal trajectory (or timed palh} is that
producing the minimum cost function. Although this cost functional is composed of the two cosl
elements (length and threat) it conceals a source of error that produces optimal paths with high
threat values i.e. not actually optimal and not safe. These resulls return to: a) the length cosl
dominates the effect on the cost function even with large weighting and priority for the threat cost.
b) radar threats or probabilities of being detected by adverse radars are only considered, while
threats of Surface to Air Missiles (SAMSs) are not included in the threat function. c) weighting
quantities given may be suitable for costs of some path edges and not suitable for other edges of
the same path and other paths.

In this paper a proposed algorithm to compute the real efficient path depending upon a
proposed fitness function. The function gives a balanced domination for botk length fitness and'
threat fitness. Besides, the threat on it consists of the two components: radars and SAMs. The
algorithm autonomously computes the proper values of the weighting quantities that guide the
fitness function towards the higher priority cost element in case of time constraint. It also gives the
vehicle a necessary flexibility to adjust the pre-given priority factors in order to compute other
optimal paths that fulfills a rendezvous time with the other team mernbers.
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List Of Symbols:

Joapy the total cost of a path p.

Jup  thelength cost.

Jypy  the radars thereat cost.

Jspy  the threat on the path due to a SAM
site.

Jengpy threat on path p due to radars and
SAMs.

Jiavys Jinavy the average length costs and

threat costs of all feasible paths.

KL, K, the priority factors for length cost and
threat cost.

k the number of the edges of the path.

L the length of the edge i of a path.

d; the distance from the vehicle position
to a radar site.
N, the number of engaged radar sites

d{y/¢),, the distance from the 1/6" point o i

edge to the jy, radar.
d?i/Z)” the distance from the 1/2If point

on iy edge to the j, radar.
d?slﬁ)u the distance from the 5/6th point on

iy edge 1o the j, radar,
Qu, Q- weighting quantities for length and

radar threat.

Qwn . Weighting quantities due to Radar
and SAMS together.

ds the distance from UAYVY position and
SAM site.

I the minimum radius of the safe circle.

n,  number of feasible paths.
Fiipy Fupy Frowalgp), the fitness of the length
cost, threat cost and total cost.

1. Introduction

UAVs (sometimes called air robots) have
evolving roles in the current time and the near
future. They have civilian applications such
as: disaster relief, environmental monitoring,
weather reconnaissance, search then rescue
during wildfire incidents, and planetary-
exploration. They have many useful military
applications, including reconnaissance, search

then destroy and search then rescue missions
in  hazardous environments such as
battlefields or disaster areas. Recently, there
has been a considerable interest in the
possibility of using large teams {swarms} of
UAVs  functioning  cooperatively  to
accomplish a large number of tasks. This
necessitates that these vehicles are behaving
autonomously, giving rise to the search area
of unmanned autonomous vehicles. These are
usually seen as rather simple vehicles, acting
cooperatively in teams to accomplish difficuit
missions in dynamics, known, hazardous
environment.

The potential advantages of UAVs over
manned aircrafts are significant and motivate
the development of advanced UAV
technologies. The important affecting factors
are[1-3]:

1. Altitudes, greater than 60,000 ft increasing
survivability.

2. Endurance, its value is primarily in the
economics of fleet size necessary 1o
accomplish a specific mission.

3. Reliability, flight management system
(including  onboard  flight  control,
communication links, and ground station
support) is the primary contributors in this
factor.

4. Storability, this requires a vehicle for fast
Surge response.

5. Maximum Maneuverability, the
maneuverability of a UAV could fast exceed
that of a manned aircraft.

6. Low Risk To Human QOperatars, UAVs are
suitable for missions where the risk to pilots
would be deemed unacceptably high.

7. ‘Significant Weight Savings, because there is
no pilot or cockpit in a UAV. Superior
Coordination, it is the cooperation in which -
the actions performed by each agent take
into account the actions executed by the
other agents, and UAVs are Cost Effective,
there cost is significantly low compared to
their manned counterpart.
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Fig.2 Paths by Cell Decomposition

One of the most challenging problems is
the Trajectory Planning (TP) for a single and
multiple vehicles. There are some proposed
methodologies reported for TP. They can be
categonized as : cell decomposition [4-11],
road map [12-16], virtual forces [17-19] and
linear programming techniques (integer and
mixed integer) [20-21]. Figs. 1 and 2 show
the first two of these techniques. A suitable
algorithm (e.g. Dijkestra, A*, breads first,
depth first, eic.) is used to search for the
optimal path from all feasible paths. This is
the path which has the minimum cost.

The cost function used in road maps and
cell decomposition consists of the two
elements: Length cost and radar threat cost
[23, 24] is given as:

Jronip) = Ki Jigey + Kr Jrpy (1)
Where K,=1-K_

This cost function conceals a source of
error that gives continuous domination for the
length cost regardiess what the threat value is.
Besides, the only threat considered is the
possibility of being detected by the adverse
radars. Consequently, the optimal path
designed using this cost function is actually
not the optimal one, and may be not safe at
all.

In this paper, a proposed algorithm to
compute an efficient path for UAVs. This
path is actually the most efficient one in the
sense of cost elements and priorities. A
second advantage is that it takes the threat of
the SAM sites and radar sites into
consideration. Third, it gives the mission
planner (and the autonomous vehicle} a
chance to assign more priority for trajectory
threat cost over its length or vise versa. This
enables the vehicle to cooperate with the other
team members autonomously by choosing a
path that satisfies the rendezvous time. Forth,
the algorithm computes the suitable values for
the weighting factors (Qu, Qu) depending
upon the priority factors.

2, Conventional Optimal Trajectory

Each path from the wvehicle starting
position to the target position consists of a
number of path edges connected together to
form a path (Fig. 3). The path length cost is
the sum of its edge lengths i.e.
Jupy = Zie1 L (2)

The threat on a vehicle at a specific,

point from a radar site is the probability of
being detected by that radar. [t is inversely
proportional to the forth order of the space
between them {20, 21}.
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Jry = 1/d} (3)

To compute the threat from a radar site
on a path Eqn. 3 has to be integrated along the
path length. This integration costs heavily,
computation wise and is not feasible for a
UAYV, because this process has to be done in
real time while the vehicle is flying.

To avoid integration in real time, a
simplified method is widely used by
computing the threat at three points only on
the path. ie.(1/6 ,1/2,5/6) of the path
length, [19,23-26]. Threat costs are based on a
UAV’s exposure to adversary radars. Since
the strength of a UAV’s radar signature is
proportional to 1/ d,* . The threat cost for
traveling along an edge of path is proportional
to the inverse of the distance to the forth
power as explained in Eqn.2.

TARGET

hlo/}:.-_,.,,, {;1,
'
/

Fig. 3 Radar Threat Cost
The threat cost associated with the i edge is
given by the expression:

;’m(p)=(l-t2f.',d.l ! -l-m1 ) 4)

3
wey,  damy, ey,

A cost function is formed from these
two crucial elements: the path length J, and
the threat J that a vehicle is subjected to.
The two elements have the same priogity and
same weight [ ]. The mission planner may
give more priority and more weight for one
element over the other. Minimizing the
threat cost increases the safety of the vehicle
and the possibility of mission success, while
minimizing the path length, minimizes the
fuel consumption and the flying time.

Jrotat(py = Qi) + @rKidriny (5)

The planning algorithm computes the
cost functions and searches for the minimwn
one. [ts path is the optimal path for vehicle U
to its target T,

A major problem here arises when

adding 'the large values of lengths to the
fraction numbers of threats value (the threat
is « 1/d*). Eqn. S eliminates the effect of
the threat value, and the length factor is
dominating. (Qp = Q; because the SAMS
Are not considered in this conventional
technique) Using a weighting factor Q, and
Qy does not solve the problem because it
may fit for some values of threats but not fit
for other values. The net result is that the
optimal path computed is not the optimal
one. It may not be the safest one even with
priority and weighting are given to the threat
cost. this is detected numerically in the
following example.
Example I: A vehicle U has three feasible
paths (path P,, path P,, and path P;) to its
target T Fig. 4. The length values of these
paths are 400,200,300 (nautical miles)
respectively, while the values of the radar
threats are 0.001,40, and 2 as shown in table
1. From the given values it is clear that the
path with minimum threat cost is P,, while the
path with minimum length cost is P;. Using
Eqgn. 5 the results are summarized in table 1.

wls Timgw

Fig. 5 Three Different Paths with Differcnt
Costs
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Case A: Both length and threat costs have the
same priority factors (kr = kg = 1), and the
same weighting quantities (Qu = Qu = 1). The
optimal path which has the minimum total
cost function is Pz (Jiow =240).

Case B: Giving more priority to the threat
cost over the length cost (k,= 0.8, K, =0.2),
with the same weight ( Q. = Qu =1), The
minifnum cost function is path Py (Jiua =616).
Case C: Although the threat cost are given
more priority than the length cost (k~0.8,
K.=0.2), the threat weighting is 10 times the
length weighting. The minimum cost is also
path P;,

Table 1 Values of the Cost Functions

Li=400 | L;=200| L,=300
Notey
In=001] Jr=d40 | Ju=1
Case A e 1 K, =1, Q=]
St 40001 |H2404 302 | Ky =1,Qu=1
Case B i K, =0.8,Q,=1
f §0.008 72.0 %ﬂ. Ko =0.2,Q, =t
Case C Ay K. =0.2, Q=1
St 3200 [FRC160834) 24002 | Ki=08.Q =10

It is clear that all the three results are not
producing the least threat path which is pyfits
radar threat is 0.01 ).

3. The Proposed Algorithm
A UAYV is subjected to different types of
threats from soft weapons like jammers and
decoyers or hard weapons such as: shoulder
lunched homing weapons, radar directed
guns, SAMs and early warning radars. The
UAV is equipped with anti-jamming and anti-
decoying sets. Flaying at altitude above 5000
ft defeats most radar directed guns and above
15000 ft defeats most shoulder launched
homing weapons. SAMs are of different
types of equipment, namely small range
medium range, large range and long-range
fire control sensors. Fire control sensors work
as tracking and sensing tools, it doesn't have
any destructive capability [27].
It is clear that using the conventional
methodology to compute the optimal path
results in paths that are not optimal and do not

have the minimum threat regardiess of the
weighting factors or priority factors. Also, the
only threat considered is that of radar sites. In
the following an explanation of a proposed
algorithm to compute a real cost function that
considers for other threats.

1) The radar threat J, is computed by Egns.3
and 4 for every path.

2) Every SAM site has a specific range circle.
A safe circle with a diameter greater by a
safety factor than that of the range circle is
formed as shown in  Fig, 6. The path must
be away from the circumference of a safe
circle. [t will be beyond the SAMs range. If a
path is passing over a safe circle of any SAM
site, this path is checked and dropped by the
trajectory  planning  algorithm,  before
searching the optimal path. in this case this
unsafe path is no longer considered.

These safe circles have different diameters
depending on SAMs range, however the paths
close to it is still subjected to threats from
these SAMs due to sources of ermors (e.g.
sensors error, time delays, position estimation
errors, elc ....,). This threat is computed as
[27,28]:

1
Is= (1__'_:1’2_)
=0 else where

ifds <75 (6)

Fig. 6 Considered Distances from SAMs
And Radar Sites

3) The threat cost of a path p is composed of
two parts: radar threat J, of all radar sites N,
and the other one is SAMs threat J; of the
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specific site the vehicle is tuming around or
tangent to it.

Tenep) = ey s
Jogy = LI € ‘:'-:»u+ ‘?-:nu+ ‘,u:“u)ﬂﬁ,) )]
4) From all feasible paths for vehicle U to

target T the average path length is:

Juavy = ot S )My ®)
5) The average threat subjected on all feasible
paths from Uto T is:

Jtnany = (E::lfm(p) )/ 1 9
6) Every considered path from U to T has a

fitness value. For the length cost this fitness is
computed as:

FL(p) = jl.(av)/jl.(p) (10)
The shortest path will have the highest length
fitness Fy(p). Similarly, the fitness of the threat
cost of each path is:

Fentpy = Jenaw) / Jtnp) (1)
7) The weighting values Qu and Q are neither
given by the mission planner nor fixed for all
paths. If priority is given 1o a certain cost
element its corresponding weighting has a
considerably high wvalue. The algorithm
computes the suitable weighting quantities for
each path as:

Quv = (2 Sy + Zpoy Jengy) (1)
The weighting quantities for that path Qu, and
Q. are computed as:

- If K =ky then th= 1, QL=i.

- If K> K then Qi =Qay, Qu=I. (13)
- If Ku<Kg then Qu=1, Qr=Qa

8) The Fitness of path p is determined by the
fitness of its total costs according to its priority
values and consequently its weighting. Getting
the results of Eqns. 10 to 13 the total fitness of
pass p is:

Frotat(py = QLKLFipy + QunKenFenpy (14)

Fiotai(py is Computed for all feasible paths

from U to T. The algorithm searches for the

optimal path P which has the maximum total
fitness Fiopai(p)-

Frotatipy ©f Eqn. 14 provides a balanced
effect of the threat component regardless their
values, The mission planner has a chance to
give priority for one component over the other
depending upon the situation. The vehicle can
compute, autonomously the correct weighting
quantities. It also can shift the given priority
factors if necessary to search other near
optimal path to  achieve  arrival
synchronization with the other team members.
The algonthm is explained in Fig. 6.

Get ol feasdble paths P
from £k Vehkde U1
vach Thrpet 7

Compte Lngrh £l £
& et Gt Dl i

For Bch (U-T) Parr
Compute the Lerpih

Frress £ B Ihe Tregt
Fitnasy Fm.

%, Xn

LT TE T T ]
Tt for it from

or Each [I)-T) 24
Computd the Anronciats
Yaiurs for the weghting
Choantities O Gh

%7 MR e ootena
i h T TR

Adjust The priority
Faciony

Fig. 6 Computing the Efficient Path

4. Simulation Results

In the following examples, the efficient
path designed by the proposed method is
compared to the optimal path designed by the
conventional method. The threat value (of
radars and SAMSs) is assumed the same values
given in exampie t (for radars only). The
resulted optimal
different.
Example2: Considening the same values
given in example | (Fig. 4) the results of the
proposed techniques is shown in table 2.

paths are apparently

Jetasy = 9003 = 300,
14.003

Qav =(900+42.01)/2=471.005
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Table 2 Computation of the Fitness

Function
P, Py P,
Fpeys| 004002038 ”‘ﬁ?” 3007300 = 1
14.003/40| 14.00072 =
chip | 14.0030.01=1400) 7 700
Ka=1.Qu=1
L85 Bo01s | L G
Case B
Ku=0.8,0Qy=0Q,.
E 5 "
roral (piilicrTeoc el 1321 | 26378 | g, 0
Cnse C o T Ka= 02,Qu=1
562.6 15652 3782 ‘
totaiiz) A K =0.8,00=Q.

Case A: Length and threat cost are balanced
and have the same weight, the maximum fit is
path P, which has the minimum threat value
(0.01).

Case B: Threat cost are given more priority
than the length cost (k=.8, K. =0.2). The
maximum fit path is also P,

Case C: The length cost is given more priorty
than the threat cost (k,=0.2, K =0.8). The
most fit path is path P; This path has the
minimum length cost.

So, the resulted efficient path is the
one with minimum threat cost if priority is
given to threat cost over length cost or if both
prioritics are equal. While it is the one with
minimum length cost if the priority is given to
the length cost.

Table 3 summarizes the comparison between
the resulted optimal path in the two
techniques.

Table 3 Results of the Proposed
Technique Vs. the Conventional one

Path Computed
Coreccl
E 1

CaS Conventtonal| Proposed Optimal Path NOTES

Equal Pl has the

b P2 P Pl minimum threat

Y value{D.01)

Priorily for Pl has the
mreal):.:osl Pl Pl ri minimpm theeal

L_ value{0.01)

. F2 has the
Priority for P2 P2 |34 minimum
lengih cast

Length path(200)

Example3: to plan a irajectory for a UAY
from its starting position to iU’s target through
six SAMs and five radar sitcs, all possible
path are generated by the planning algorithm
explained in {25]. The optimal path is
compuled by the proposed algorithm {path A),
and the conventional method (Path B) Fig. 7.
Their costs are:

JL{,\) = 1340 th(A) = 8.4. JL(B) = 1230, J||.(|3] =
20.5.

The priorty of the two costs are equal in the
two cases, K. =ky =0 .5. The weighting
values :  =Qy, =1.0 {for the two cases.

It is clear that the optimal palh designed by
the proposed algorithm is safer and a little bit
longer. The probability of detection of the
vehicle on path B is higher because some part

of it is closer to radar site # 2.

i
!
!
/
y
\
[
[
|
|
I
[
/

Fig. 7 Proposed Optimal Path vs.
Conventional One

Example 4: this example explained in Fig. 8
shows one advantage of 1the proposcd
algorithm that is: giving dilferent priorities
for one cost element guides the algorithm to
choose the path which satisfies this condition
in an optimal manner. In path A the length
cost is given more priority over the threat
cost i.e. ky, = 2, k. =8. While in Path B the
threat cost is given higher priorities k=8,
k=2, the algorithm scarchcs for the most
safe path with the minimum lcngth. This
minimum length is clearly longer than that of
case A.
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This property manages the vehicle to
cooperate with other team members for
synchronized arrival to targets. But it must
be noted here that not every change in the
priority values produces different paths. This
is restricted by the feasible paths available .

0

Fig. 8 Different prierity Produces
Diffcrent Optimal Paths

Conclusion:

The conventional cost function
produces an optimal path which does not
have the minimum cost but the minimum
length path (regardless the threat cost). This
is due to the domination of length over the
threat in the cost function. Another
~ disadvantage of the conventional method is
that: it considers only for the radar sites i.e.
the probability of being detected by the
adverse radars. There is an important source
of threat not considered that is the probability
of passing over a SAM site. This paper
introduces a proposed algorithm to compuie
an efficient path. It has the following
strengths:

1) The resultant path has the maximum
fitness (consequently, the minimum cost)
with a balanced effects of the cost
elements (length and threat) on the cost
function.

2} It considers for the real threats on the
ficld i.e. threats of the SAMs and radars.

3) The algorithm computes the proper
weighting values for each path. These

values preserves the prioritics of cost
elements.

4) It Provides a sort of flexibility for thc
vehicles to fulfill rendezvous lime by
adjusting aufonomously the priority
factors.
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