Mansoura Journal of Chemistry V. 39 (1) 2012

a West

ţ

THE ASSOCIATION AND FORMATION CONSTANTS FOR NaBPh₄ STOICHIOMETRIC COMPLEXES WITH 2-HYDROXYIMINO-3-(2'-HYDRAZONOPYRIDYL)-BUTANE (HL).

E.A.Gomaa *, K.M.Ibrahim and N.M.Hassan Chemistry Department, Faculty of Science, Manoura University, 35516 -Mansoura, Egypt.

Received: (26/ 4/ 2012)

ABSTRACT

The association constant ,formation constants and Gibbs free energies are calculated from the conductometric titration curves of NaBPh4 with 2hydroxyimino-3-(2'-hydrazonopyridyl)-butane (HL) in absolute ethanol at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K). On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines are obtained indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants of different complexes in absolute ethanol follow the order: $K_f(2:1) > K_f(1:1) > K_f(1:2)$ for (M:L). As the temperature increases, the formation constants and association constants of different complexes increase. The enthalpy and the activation energies were also estimated and their values were also discussed.

Key words: Association constants; formation constants; Gibbs free energies; activation energies.

INTRODUCTION

The long range ion - ion interactions due to screened columbic forces are the most important features of electrolyte in solutions. These act together with shorter - ranged forces between the solvent molecules and between the solvent molecules and ion. Electrical conductivity (EC) is a measure of solvent to conduct electric current and depends on: concentration of the ions, ligand and temperature in solutions. Current is

carried out by both cations and anions, but to different degree. Metal cations with d^o noble gas electron configuration (alkali and alkaline earth) metal ions together with the inert molecular ions like tetraalkylammonium,-phosphonium,-arsonium, and trialkylsulfonium ions exhibit properties mainly determined by their charge and size [Robison et al., (2002)]. Solvation of such cations in protic and polar solvents is due to electrostatic ion-dipole and ion induced dipole interactions. Most alkali metals have many different applications. Sodium has a biological role; it is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and PH. Sodium tetraphenyl borate is commercially useful for various purposes. It may be included polymeric composition to impart electrical conductivity. It has been used to precipitate radio active cesium 137 impurities from waste water. Complexes of sodium, potassium and cesium with a range of cyclic polyethers have been synthesized using tetraphenyl borate as the counter ion. While some complexes are found to have similar metal co-ordination to compounds studied previously, the non co-ordination of the tetraphenyl borate anion enables new products to be obtained when reaction conditions are varied. Thus, the sandwich compound Na(benzo-15- crown-5)2BPh4 crystallizes in high yield when appropriate reactant ratios are empoyed, and dibenzo-30-crown-10 is found to eo-ordinate either one or two sodium ions depending on the solvent conditions used [Parsons et al., (1975)].

The aim of this work, is to evaluate of the non-covalent behavior of NaBPh₄ in presence of 2-hydroxyimino-3-(2'-hydrazonopyridyl)butane (HL) in absolute ethanol solutions at different temperatures. These non-covalent interactions can help to analyze the role of salts influence in bodies and environment.

EXPERIMENTAL

Materials and Methods

All manipulations were performed under aerobic conditions. The Sodium tetraphenylborate and the used reagents were Merck pure.

Preparation of Ligand

2-hydroxyimino-3-(2'-hydrazonopyridyl)-butane (HL) (scheme 1) was prepared by boiling an EtOH solution of 2-hydrazino pyridine (Aldrich) with 2, 3-butanedione monoxime (1:1) under reflux. The product was recrystallized from hot absolute EtOH [Kamal et al.,(1991)]. (M.p: 220 °C; yield 80%). The purity of the compound was checked by TLC.

2-by droxy intino-2-(2'-by drazonopyridy!)-butane

Scheme. (1): The outline of the synthesis of 2-hydroxyimino-3-(2'-hydrazonopyridyl)-butane (HL).

Conductometric titration

1

The conductometric titration of the NaBPh₄ ($1x10^{-4}$) mole/L against the ligand ($1x10^{-3}$) mole/L in absolute ethanol was performed with 0.2 ml interval additions from HL solution. The specific conductance values were recorded using conductivity bridge AdWa, AD 3000 with a cell constant equal to 1 cm⁻¹. The temperature was adjusted at 293.15 K, 298.15 K, 303.15 K and 308.15 K.

RESULTS AND DISCUSSION

The specific conductance values (K_s) of different concentrations of NaBPh₄ in absolute ethanol were measured experimentally in absence

E.A.Gomaa, et al.

and in the presence of ligand at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

The molar conductance (Λ_m) values were calculated **[Gryzybkowski et al.**, (1980)] using equation (1):

$$\Lambda_m = \frac{(K_s - K_{solv})K_{cell} \times 1000}{C}$$
(1)

Where K_s and K_{solv} are the specific conductance of the solution and the solvent, respectively ; K_{cell} is the cell constant and C is the molar concentration of the NaBPh₄ solutions.

The limiting molar conductances (Λ_M) at infinite dilutions were estimated for NaBPh₄ in absolute ethanol alone at different temperatures by extrapolating the relation between Λ_m and $C_m^{-1/2}$ to zero concentration as shown in Fig.(1).

Fig. (1): The relation between molar conductance (Λ_m) and $(C_m^{\prime \prime})$ of NaBPh₄ alone in absolute ethanol at different temperatures (293.15K, 298.15 K, 303.15 K and 308.15 K).

The limiting molar conductances (Λ_0) at infinite dilutions were estimated for NaBPh₄ in the presence of the ligand (HL) by extrapolating the relation between Λ_m and $C_m^{-1/4}$ to zero concentration Fig. (2).

Ì

ł

÷

ļ

ţ

By drawing the relation between molar conductance (Λ_m) and the molar ratio of metal to ligand (M/L) concentrations (fig. (3), (4), (5), (6)), different lines are obtained with sharp breaks indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes.

and M/L at 293.15 K

Fig. (4): The relation between Λ_n and M/L at 298.15 K.

Fig. (5): The relation between Λ_m Fig. (6): The relation between Λ_m and M/L at 303.15 K and M/L at 308.15 K.

The experimental data of (Λ_M) and (Λ_o) were analyzed for the determination of association and formation constants for each type of the stoichiometric complexes.

The association constants of NaBPh₄ in the presence of ligand (HL) in absolute ethanol at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K) for 2:1,1:1 and 1:2 (M:L) were calculated [El-Shishtawi et al., (2010) and Hamada et al.,(2009)] by using equation(2):

$$K_{A} = \frac{\Lambda_{o} (\Lambda_{o} - S(Z) \Lambda_{m})}{C_{m} \Lambda_{m}^{2} S(Z)^{2} \gamma^{\pm}}$$
(2)

Where (Λ_m, Λ_0) are the molar and limiting molar conductance of NaBPh₄ in presence of HI respectively; C_m is molar concentration of NaBPh₄, S(Z) is Fuoss-shedlovsky factor, equal with unity for strong electrolytes [Gomaa, (1987)], $\gamma \pm$ is the mean activity coefficient. The calculated association constants are shown in Table (1).

í

•

ì

					······
[M] ~	[HL]		KA		-
(NaBPh4)		293.15 K	298.15 K	<u>303.15 K</u>	308.15 K
9.52x10 ⁻⁵	4.76x10 ⁻⁵	1.31x10 ⁵	1.35x10 ⁵	1.39x10 ⁵	1.39x10 ⁵
9.38x10 ⁻⁵	6.25x10 ⁻⁵	1.28x10 ⁵	1.32x10 ⁵	1.36x10 ⁵	1.36x10 ⁵
9.26x10 ⁻⁵	7.41x10 ⁻⁵	1.24x10 ⁵	1.29x10 ⁵	1.33x10 ⁵	1.3 <u>4x</u> 10⁵
9.09x10 ⁻⁵	9.09x10 ⁻⁵	1.24x10 ⁵	1.25x10 ⁵	1.26x10 ⁵	1.29x10 ⁵
8.88x10 ⁻⁵	1.12x10 ⁻⁴	1.13x10 ⁵	1.14x10 ⁵	1.18x10 ⁵	1.2 <u>1x</u> 10 ⁵
8.67x10 ⁻⁵	1.33x10 ⁻⁴	1.08x10 ⁵	1.10x10 ⁵	1.12x10 ⁵	1.15x10 ⁵
8.47x10 ⁻⁵	1.53x10 ⁻⁴	1.03x10 ⁵	1.04x10 ⁵	1.07x10 ⁵	1.10x10 ⁵
8.33x10 ⁻⁵	<u>1.67x10⁻⁴</u>	9.98x10 ⁴	1.01x10 ⁵	1.02x10 ⁵	1.06x10 ⁵
8.15x10 ⁻⁵	1.85x10 ⁻⁴	9.67x10 ⁴	9.81x10 ⁴	9.92x10 ⁴	1.03x10 ⁵
7.98x10 ⁻⁵	2.02x10 ⁻⁴	9.38x10 ⁴	9.53x10 ⁴	9.61x10 ⁴	9.99x10 ⁴

Table (1): Association constants (K_A) of NaBPh4 with HL at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

The Gibbs free energies of association (ΔG_A) were calculated from the association constant [Gomaa, (1988) and El-Doussoki, (2008)] by applying equation (3):

$$\Delta G_A = -R T \ln K_A \qquad (3)$$

Where R is the gas constant (8.341 J) and T is the absolute temperature. The calculated Gibbs free energies were presented in **Table** (2).

Table (2): Gibbs free energies of association ΔG_A (k J/mol) of NaBPh4 with HL at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

[M]	[HL]		ΔG _A		
(NaBPh4)		293.15 K	298.15 K	303.15 K	308.15 K
9.52x10 ⁻⁵	4.76x10 ⁻⁵	-28.7184	-29.2881	-29.8407	-30.3379
9.38x10 ⁻⁵	6.25x10 ⁻⁵	-28.6604	-29.2337	-29.7442	-30.2446
9.26x10 ⁻⁵	7.41x10 ⁻⁵	-28.5877	-29.1624	-29.6057	-30.1545
9.09x10 ⁻⁵	9.09x10 ⁻⁵	-28.5801	-29.0834	-29.6057	-30.1545
8.88x10 ⁻⁵	1.12x10 ⁻⁴	-28.3586	-28.8679	-29.4324	-29.9799
8.67x10 ⁻⁵	1.33x10 ⁻⁴	-28.2451	-28.7639	-29.3088	-29.8542
8.47x10 ⁻⁵	1.53x10 ⁻⁴	-28.1340	-28.6434	-29.1879	-29.7350
8.33x10 ⁻⁵	1.67x10 ⁻⁴	-28.0547	-28.5622	-29.0635	-29.6372
8.15x10 ⁻⁵	1.85x10 ⁻⁴	-27.9786	-28.4919	-28.9968	-29.5736
7.98x10 ⁻⁵	2.02x10 ⁻⁴	-27.9030	-28.4192	-28.9172	-29.4941

The formation constants (K_f) for NaBPh₄ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M:L) [Takeda, (1983) and Rahmi-Nasrabadi et al., (2009)] by using equation (4):

$$K_{f} = \frac{\Lambda_{M} - \Lambda_{obs}}{(\Lambda_{obs} - \Lambda_{MI})[L]} \qquad (4)$$

Where Λ_M is the limiting molar conductance of the NaBPh₄ alone, Λ_{obs} is the molar conductance of solution during titration and Λ_{ML} is the molar conductance of the complex.

The obtained values (K_f) for NaBPh₄-ligand stoichiometric complexes are presented in Table (3).

Table (3): Formation constants (K_f) for 1:2, 1:1 and 2:1 (M/L) complexes in absolute ethanol at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

Complex ratio (M/L)	Concentration		Temperature			
	[M] (NaBPh ₄)	[HL]	293.15 K .	298.15 K	303.15 K	308.15 K
1:2	8.33x10-5	1.67x10 ⁻⁴	2.25x10'	2.26x10	2.31x10'	2.45x10'
1:1	9.09x10 ⁻⁵	9.09x10 ⁻⁵	6.79x10'	6.81x10'	6.97x10'	7.09x10'
2:1	9.52x10 ⁻⁵	4.76x10*	7.68x10′	8.01x10'	8.41x10 ⁷	8.54x10'

The Gibbs free energies of formation for each stoichiometric complexes were calculated by using the equation:

$$\Delta G_{f} = -R T \ln K_{f} \qquad (5)$$

The calculated ΔG_f values are presented in Table (4).

Table (4): Gibbs free energies of formation ΔG_f (kJ/mol) of NaBPh4 with HL at different temperatures (293.15 K, 298.15 K, 303.15 K and 308.15 K).

Complex	Concentration		Temperature			
ratio	[M] (NaBPh4)	[HL]	293.15K	298.15K	303.15K	308.15 K
1:2	8.33x10 ⁵	1.67x10 ⁻⁴	-41.2632	-42.6771	-42.7369	-43.5857
1:1	9.09x10 ⁻⁵	9.09x10 ⁻⁵	-43.9516	-44.7082	-45.5191	-46.3127
2:1	9.52x10 ⁻⁵	4.76x10 ⁻⁵	-44.2540	-45.1105	-45.9921	-46.7893

ţ

[

i

The enthalpy (ΔH_A) for NaBPh₄ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M:L) by using van 't Hoff equation [Atkins, (1978) and Ives, (1971)]:

$$dink / dT = \Delta H / RT^2 \qquad (6)$$

Where R is the gas constant (8.341 J) and T is the absolute temperature. By drawing the relation between log K_A and 1/T, different lines are obtained indicating the formation of 1:2,1:1 and 2:1 (M:L) stoichiometric complexes Fig.(7).

Fig. (7): The relation between $(\log K_A)$ and (1/T).

From the relation between log K and 1/T, ΔH_A can be calculated for each type of complexes from the slope of each line (- $\Delta H/2.303R$).The entropy (ΔS_A) for NaBPh₄ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M: L) by using equation (7):

$$\Delta G = \Delta H - T \Delta S \tag{7}$$

E.A.Gomaa, et al.

Where (S) is the entropy of system.

The calculated values of (ΔH_A) and (ΔS_A) for NaBPh₄-ligand stoichiometric complexes are presented in **Table (5)**.

Table (5): The enthalpies (ΔH_A) (kJ/mol) and entropies (ΔS_A) (J/mol.K) of association for different complexes.

Complex ratio		1:2 (M/L)		
Тетр	293.15 K	298.15 K	303.15 K	308.15 K
ΔH _A	2.8508	2.8508	2.8508	2.8508
ΔS _A	105.40	105.40	105.30	105.4
Complex ratio		1:1(M/L)		
Temp	293.15 K	298.15 K	303.15 K	308.15 K
ΔH _A	1.8934	1.8934	1.8934	1.8934
ΔSA	104.00	103.90	103,90	104.00
Complex ratio		2:1(M/L)		
Temp	293.15 K	298.15 K	303.15 K	308.15 K
ΔH _A	3.1247	3.1247	3.1247	3.1247
ΔS_A	108.60	108.70	108.70	108.60

By drawing the relation between log K_f and 1/T, different lines are obtained indicating the formation of 1:2,1:1 and 2:1 (M:L) stoichiometric complexes Fig.(8).

Fig. (8): The relation between (log K_f) and (1/T).

.

١.

÷

-

ļ

•

The enthalpy (ΔH_l) for NaBPh₄ complexes were calculated for each type of complexes (1:2), (1:1) and (2:1) (M:L) by using van't Hoff equation.

The calculated values of (ΔH_f) and (ΔS_f) for NaBPh₄-ligand stoichiometric complexes are presented in Table (6).

Table (6): The enthalpies ΔH_f (kJ/mol) and entropies (ΔS_f) (J/mol.K) of formation for different complexes.

Complex ratio		1:2 (M/L)		
Temp	293.15K	298.15 K	303.15 K	308.15 K
ΔH _f	4.1390	4.1390	4.1390	4.1390
ΔS_{f}	154.80	157.00	154.60	154.80
Complex ratio		1:1(M/L)		
Temp	293.15 K	298.15 K	303.15 K	308.15 K
ΔH _f	2.2974	2.2974	2.2974	2.2974
ΔSr	157.70	157.60	157.70	157.70
Complex ratio		2:1(M/L)		
Temp	293.15 K	298.15 K	303.15 K	308.15 K
ΔH_{f}	5.5283	5.5283	5.5283	5.5283
ΔSr	169.80	169.80	169.90	169.70

The activation energy (Ea) is estimated for NaBPh₄ in absolute ethanol alone and in the presence of the ligand (HL) by using Arrhenius equation (8) [Cox, (1994)]:

$$k = A e^{-E_{\rm g}/RT} \tag{8}$$

Where A is the pre-exponential factor or simply the *prefactor* and R is the Universal gas constant.

Activation energy in absence of HL can be calculated from the plot of log Λ_M and 1/T as shown in Fig. (9), it gives a straight line with a slope (-Ea/2.303R). Activation energy is found to be 2.5116 kJ/mol.

Fig. (9): The relation between $\log \Lambda_M$ and 1/T.

Activation energy in presence of HL can be calculated from the relation between log Λ_0 and 1/T as shown in fig. (10) .from the slope (-Ea/2.303R), Activation energy is found to be 4.4377 kJ/mol.

Fig. (10): The relation between $\log \Lambda_0$ and 1/T.

. , ;

4

CONCLUSION

The association free energies evaluated for $NaBPh_4$ -ligand complexes indicating a spontaneous electrostatic attraction.

The formation constants and Gibbs free energies of different complexes in absolute ethanol at different Temperatures (293.15 K, 298.15 K, 303.15 k and 308.15 K) follow the order: $K_f(2:1) > K_f(1:1) > K_f(1:2)$ for (M:L), and $\Delta G_f(2:1) > \Delta G_f(1:1) > \Delta G_f(1:2)$ for (M:L).

The formation of 1:2, 1:1 and 1:2 (M:L) complexes indicate that (HL) may act as flexidentate ligand.

3

REFERENCES

Atkins, P.W. (1978), Physical Chemistry, Oxford University Press.

Cox,B.G, (1994) Modern liquid phase kinetics, Oxford science publications

El-Doussoki, F.I. (2008) Journal of Molecular Liquids 142, 53.

El-Shishtawi, N.A, Hamada, M.A. and Gomaa, E.A. (2010) J. Chem. Eng. Data 55, 5422.

Gomaa, E.A. (1988) Thermochimica Acta 128, 99.

Gomaa, E.A. (1987) Thermochimica Acta 120, 183.

Gryzybkowski, W. and Pastewski, R. (1980) *Electrochimica Acta* 25, 279.

Hamada, M.A., El-Shishtawi, N.A. and Gomaa, E.A., (2009), South. Braz. J.Chem. 17, 33.

Ives, D.J.G. (1971), Chemical Thermodynamics, University Chemistry, Macdonald Technical and Scientific.

Kamal M.Ibrahim, Magdy M.Bekhit and Gaber M.Abu EL-Reash (1991) Transition Met Chem, 16,189-192.

Parsons D.G., Truter M.R., Wingfield J.N., Inorganic Chimica Acta, Volume 14, 1975, Pages 45-48

Rahmi-Nasrabadi, M., Ahmedi, F., Pourmor-tazari, S.M., Ganjal, M.R. and Alizadeh, K. (2009) *Journal of Molecular Liquids* 144, 97.

Robison, R.A. and Stokes, R.H., (2002),"Electrolyte solutions", Butterworth &Co. (Publishers) Ltd, Newton Abbot, Devon.

Takeda, Y. (1983) Bul. Chem. Soc. Jpn 56,

ثوابت التجمع و ثوابت تكوین متراكبات الصودیوم رباعی فینیل البورات مع ۲-هیدروكسی أمینو - ۳- (۲-هیدرازونوبیریدل) بیوتان

عصام عرفة حسن جمعة • ، كمال محمد أحمد ابراهيم ونرمين محمد حسن قسم الكيمياء -- كلية العلوم - جامعة المنصورة

استنتج ثوابت التجمع ، ثوابت التكوين ، الطاقات الحرة و طاقات المتشيط لمتفاعل صوديوم رباعى فينيل البورات مع ٢- هيدروكسى أمينو - ٣- (٢-هيدرازونوبيريدل)-بيوتان من القياسات التوصيليةعند درجات حرارة مختلفة و هى ٢٩،١٥،٢٩،١٥،٢٩، ٢٠٣،١٥ و ٢٠٨،١٥ درجة مطلقة فى الكحول الأيثيلى . عند رسم العلاقة بين التوصيل الجزيئى ونسبة الفلز الى الليجند حصانا على خطوط مختلفة تدل على تكوين متراكبات بنسبة ١:٢ ، ١:١ و ٢:١ (فلز اليجند) حسبت ثوابت التجمع و التكوين لهذه المتراكبات ووجدت انها تتبع الترتيب : ٢:١>١:١ > ١:٢ (فلز: ليجند). كذلك حسبت الأنثالبى و طاقات التشيط للتفاعل بين الفلز و الليجند و وجدت أن جميع معاملات الديناميكا الحرارية تزداد بزيادة درجة الحرارة.

55