Menoufiya University Faculty of Engineering Shebin El-Kom

Final Exam Academic Year: 2013-2014

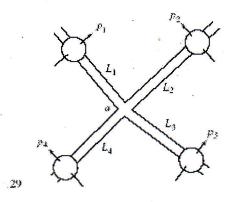


Post Graduate: Diploma

Department: Mechanical power Engineering

Subject: Pipe Network system

Time Allowed: 3hrs Date: 10/6/2014

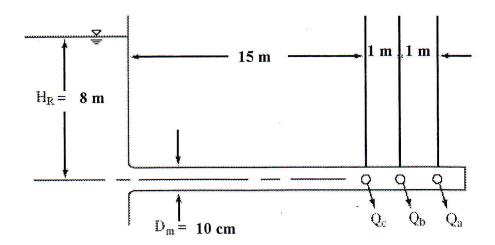

Note: Assume any data required, state your assumption clearly.

## Question (1)

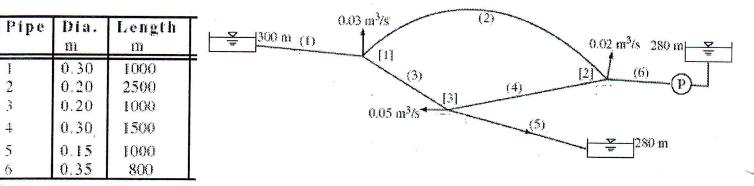
## (25 Marks)

1.a) A pipeline 10 km long, 300 mm diameter and with roughness 0.03 mm, conveys water from a reservoir (top water level 850 m) to a water treatment plant (elevation 700 m). Assuming that the reservoir remains full, and neglecting minor losses, estimate the quantity of flow. Take ( $\mu$ = 1.307× 10<sup>-3</sup> Pa.s,  $\rho$ =1000 kg/m<sup>3</sup>)

1.b) In the figure below all four horizontal cast-iron (f = 0.02) pipes are 45 m long and 8 cm in diameter and meet at junction a, delivering water at  $20^{\circ}\text{C}(\mu = 1.307 \times 10^{-3} \text{ Pa.s}, \rho = 1000 \text{ kg/m}^3)$ . The pressures are known at four points as shown:  $p_1 = 950 \text{ kPa}$ ,  $p_2 = 350 \text{ kPa}$ ,  $p_3 = 675 \text{ kPa}$ ,  $p_4 = 100 \text{ kPa}$ . Neglecting minor losses, determine the flow rate and direction in each pipe.



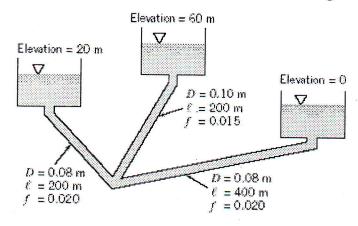

#### Question (2)


### (25 Marks)

2.a) Dive an expression for head rise coefficient due to lateral outlet and discuss how it changes with  $Q_3/Q_1$ .

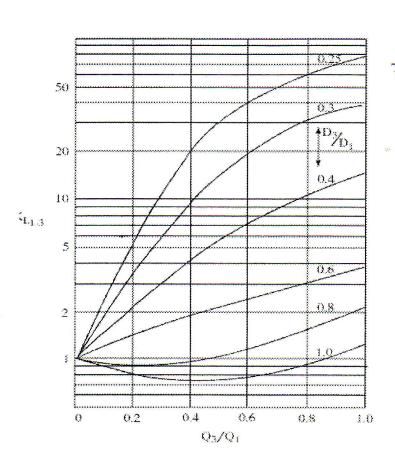
b) The 3-port manifold shown in the next diagram has a port-to-main diameter ratio  $D_3/D_1 = 0.6$ , a friction factor f = 0.02 in the main and all laterals, and  $L_3/D_3 = 5$  for each lateral. Considering fluid friction in the main and laterals and junction losses, compute the port discharges  $Q_a$ ,  $Q_b$ , and  $Q_c$ . The downstream end of the main is closed off by a blank plate.

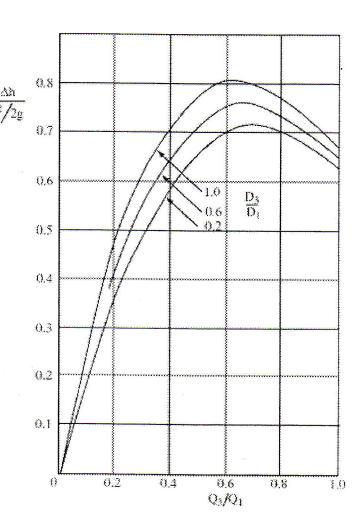


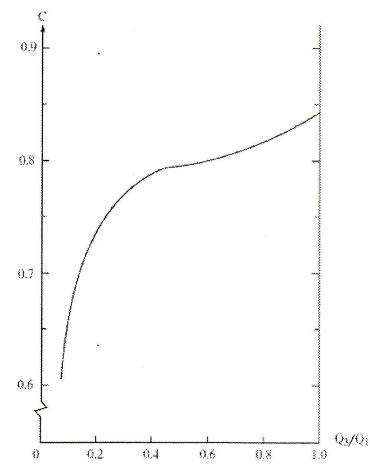

In the sketch the network consists of 6 pipes and 3 nodes. A source pump and one reservoir supply the network, and the lower reservoir receives water. Do the following tasks: (a) write the system of Q-equations; (b) write the system of  $\Delta Q$ -equations; (c) using the Newton method, describe the solution of the system of  $\Delta Q$ -equations; (d) if the discharge in pipe 5 is  $Q_5 = 0.026$  m<sup>3</sup>/s into the reservoir, and the discharge in pipe 6 is  $Q_6 = 0.112$  m<sup>3</sup>/s from the reservoir, what are discharges at other pipes? Take the friction factor to be 0.02 and  $h_p = 35-600Q^2$ .



# Question (4)


(25 Marks)

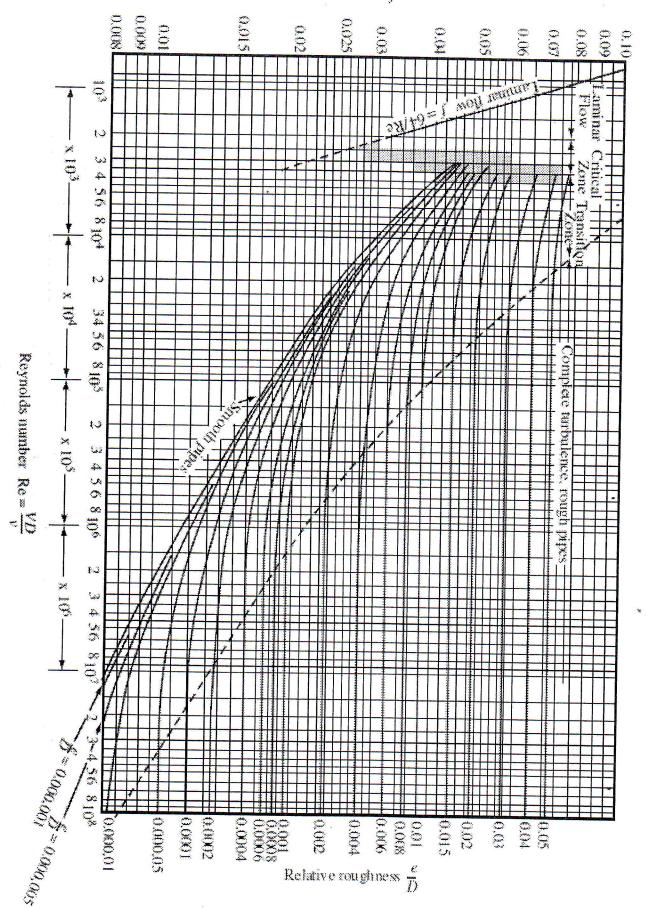

The three water-filled tanks shown in the figure are connected by pipes as indicated. If minor losses are neglected, determine the flow rate in each pipe. If a pump is introduced in the pipe connected to the highest reservoir to duplicate the flow rate into the lowest one, find the head generated by the pump.




**GOOD LUCK** 

Dr. Samy M. El-Behery








\*experimental data for the pressure rise coefficient.

Orifice coefficient C based on  $f_3$ =0.02 and  $L_3/D_3$  =5

 $\boldsymbol{\gamma}_{i}$  cranned of the behavior of the orifice coefficient C.

