Menoufiya University

Faculty of Engineering, Shebin El-Kom

Production and Mechanical Engineering Department

First Semester Examination ,2013-2014

Date of Exam: 12 /1 / 2014

Subject: Mechanisms

Code: PRE615

Level: (Postgraduate-600). Time Allowed: Three hours

100 marks **Total Marks** :

Answer the following three questions:

(Q.1) [35 marks]:

The following figure (1) indicates a compound mechanism which consists from two connected successive mechanism. The first mechanism is a four bar mechanism of linkages $(a_1, a_2, a_3 \& a_4)$. Second one is slider piston mechanism of links ($a_4 & L & piston$). The piston of this compound mechanism can be used as reciprocating punching tool through driving the compound mechanism by a suitable motor to give a rotation motion to the link (a_2). The links lengths in cm are ($a_1=100$, $a_2=40$, $a_3=70$, $a_4=90$, L=100& E=30).

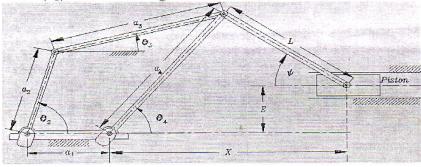


Figure (1)

- a) Compute the degree of freedom of this compound mechanism and write the kind of the first (5 marks) **mechanism of linkages** $(a_1, a_2, a_3 & a_4)$.
- b) Draw this compound mechanism at crank angle ($\theta_2=60^\circ$) to determine the coupler angle (θ_3) and the output angle (θ_4) of link (α_4) and the travelling distance (A) of the piston. (5 marks)
- c) Use the vector method to drive equations of (θ_3) & (θ_4) as a function of $(a_1, a_2, a_3, a_4 & \theta_2)$. Hence, check the calculated values of (θ_3, θ_4) at $\theta_2 = 60^\circ$ with graphical ones. (15 marks)
- d) Use the vector method to drive an equation of (X) as a function of $(a_4, L, E\&_{94})$. Hence, check the calculated values of (X) at $(\theta_2=60^\circ)$ with graphical one. (10 marks)

(O.2) [35 marks]:

- a) Draw the velocity and acceleration diagrams of mechanism which is indicated in Fig.1 at $(\theta_2=60^\circ)$ to determine angular velocities and accelerations (ω_3 & α_3 of link α_3) and (ω_4 & α_4 of link α_4) and $(\omega_1 \& \alpha_L)$ of link L) if the angular constant velocity $(\omega_2=1 \text{ rad/sec})$ of link (α_2) . (15 marks)
- b) Use the vector method to drive equations of angular velocities (ω₃ & ω₄) as a function of $(a_{1,2,3,4}, \theta_{2,3,4} \& \omega_2)$ and the equation of (ω_L) and (dx/dt) as a functions of (a_4, L, E, Θ_4) . Hence, check these calculated values (ω_3 , ω_4 , ω_L , & dx/dt)at a (ω_2 =60°) with graphical ones.
- c) Use the vector method to drive equations of angular accelerations ($\alpha_3 & \alpha_4$) as a function of $(a_{1,2,3,4}, \theta_{2,3,4}, \omega_2, \alpha_2)$ and the equation of (α_L) and (d^2x/dt^2) as a functions of $(a_4, L, E, \Theta_4 \& \omega_L)$. Hence, check calculated values (α_3 , α_4 , α_L , & d^2x/dt^2)at ($\Theta_2 = 60^\circ$) with graphical ones. (10 marks)

(Q.3) [30 marks]:

Calculate at $(\theta_2=60^\circ \text{ of link } u_2)$ the torque of the motor which can drive the crank link $(u_2 \text{ in Fig.1})$ through driving it with a constant angular speed (1 rad/sec.) for giving a pure reciprocating sliding motion to the piston of this compound mechanism, if this mechanisms linkages have the following masses in Kilograms: $(M_2=1 \text{ kg of } a_2, M_3=1 \text{ kg of } a_3, M_4=2 \text{ kg of } a_4, M_L=0 \text{ kg of } L & M_{piston}=3 \text{ kg of piston})$

With my best wishes DR/Khaled Khader -	hes DR/Khaled Khader -	The same
--	------------------------	----------

This exam measures the following ILOs													
Question Number	Q1-a	Q1-b	Q1-c	Q1-d	Q2-a	Q2-b	Q2-c	Q2-b	Q2-a	Q2-b	Q3		Q1-a
Skills	a1-1	a2-1	a3-1	a4-1	b1-1	b2-1	b3-1	b4-1	c1-1	c2-1	c3-1	c4-1	d1-1
	Knowledge & Understand Skills				Intellectual Skills				Professional Skills				General SK.