Search In this Thesis
   Search In this Thesis  
العنوان
REMOVAL OF ORGANIC MATTER from OLIVE MILL WASTEWATER USING COAGULATION AND ELECTROCOAGULATION /
المؤلف
Abd El-Moneim، Shrouk Mohamed Hassan .
هيئة الاعداد
باحث / شروق محمد حسن عبدالمنعم
مشرف / ابراهيم حسن القرش
مناقش / نبيل محمد ناجى
مناقش / ايناس محمد على
الموضوع
aral pathology.
تاريخ النشر
2018.
عدد الصفحات
93 .p. :
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الهندسة المدنية والإنشائية
الناشر
تاريخ الإجازة
1/1/2018
مكان الإجازة
جامعة قناة السويس - كلية الهندسة اسماعيلية - الهندسة المدنية
الفهرس
Only 14 pages are availabe for public view

from 107

from 107

Abstract

[1] A. Chiavola, G. Farabegoli, and F. Antonetti, ”Biological treatment of olive mill wastewater in a sequencing batch reactor,” Biochemical Engineering Journal, vol. 85, pp. 71-78, 2014.
[2] M. Sesli and D. Yegenoglu, ”RAPD-PCR analysis of cultured typeolives in Turkey,” African Journal of Biotechnology, vol. 8, 2009.
[3] A. S. E. Yay, H. V. Oral, T. T. Onay, and O. Yenigün, ”A study on olive oil mill wastewater management in Turkey: A questionnaire and experimental approach,” Resources, Conservation and Recycling, vol. 60, pp. 64-71, 2012.
[4] F. La Cara, E. Ionata, G. Del Monaco, L. Marcolongo, M. R. Gonçalves, and I. P. Marques, ”Olive mill wastewater anaerobically digested: Phenolic compounds with antiradical activity,” Chemical engineering transactions, vol. 27, pp. 325-330, 2012.
[5] N. Adhoum and L. Monser, ”Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation,” Chemical Engineering and Processing: Process Intensification, vol. 43, pp. 1281-1287, 2004.
[6] B. Meyssami and A. Kasaeian, ”Use of coagulants in treatment of olive oil wastewater model solutions by induced air flotation,” Bioresource technology, vol. 96, pp. 303-307, 2005.
[7] A. Ginos, T. Manios, and D. Mantzavinos, ”Treatment of olive milleffluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity,” Journal of Hazardous Materials, vol. 133, pp. 135-142, 2006.
[8] G. Tziotzios, S. Michailakis, and D. Vayenas, ”Aerobic biological treatment of olive mill wastewater by olive pulp bacteria,” International Biodeterioration & Biodegradation, vol. 60, pp. 209-214, 2007.
[9] K. Fadil, A. Chahlaoui, A. Ouahbi, A. Zaid, and R. Borja, ”Aerobic biodegradation and detoxification of wastewaters from the olive oil industry,” International Biodeterioration & Biodegradation, vol. 51, pp. 37-41, 2003.
[10] A. Fiorentino, A. Gentili, M. Isidori, M. Lavorgna, A. Parrella, and F. Temussi, ”Olive oil mill wastewater treatment using a chemical and biological approach,” Journal of agricultural and food chemistry, vol. 52, pp. 5151-5154, 2004.
[11] P. Aytar, S. Gedikli, M. Sam, B. Farizoğlu, and A. Çabuk, ”Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation,” Environmental Science and Pollution Research, vol. 20, pp. 3060-3067, 2013.
[12] M. Uğurlu and İ. Kula, ”Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment,” Environmental Science and Pollution Research-International, vol. 14, pp. 319-325, 2007.
[13] F. J. Beltrán, J. F. Garcı́a-Araya, J. Frades, P. Alvarez, and O. Gimeno, ”Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters,” Water Research, vol. 33, pp. 723-732, 1999.
[14] H. Dhaouadi and B. Marrot, ”Olive mill wastewater treatment in a membrane bioreactor: process stability and fouling aspects,” Environmental technology, vol. 31, pp. 761-770, 2010.
[15] A. S. Stasinakis, I. Elia, A. V. Petalas, and C. P. Halvadakis, ”Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace,” Journal of hazardous materials, vol. 160, pp. 408-413, 2008.
[16] M. J. Paredes, E. Moreno, A. Ramos-Cormenzana, and J. Martinez, ”Characteristics of soil after pollution with waste waters from olive oil extraction plants,” Chemosphere, vol. 16, pp. 1557-1564, 1987.
[17] B. Zenjari and A. Nejmeddine, ”Impact of spreading olive mill wastewater on soil characteristics: laboratory experiments,” Agronomie, vol. 21, pp. 749-755, 2001.
[18] R. Spandre and G. Dellomonaco, ”Polyphenols pollution by olive mill waste waters, Tuscany, Italy,” Journal of environmental Hydrology, vol. 4, pp. 1-13, 1996.
[19] M. Niaounakis and C. P. Halvadakis, Olive processing waste management: literature review and patent survey vol. 5: Elsevier, 2006.
[20] I. Kapellakis, K. Tsagarakis, C. Avramaki, and A. Angelakis, ”Olive mill wastewater management in river basins: a case study in Greece,” Agricultural Water Management, vol. 82, pp. 354-370, 2006.
[21] C. C. Anastasiou, P. christou, A. Michael, D. Nicolaides, and T. P. Lambrou, ”Approaches to olive mill wastewater treatment anddisposal in Cyprus,” Environmental Research Journal, vol. 5, pp. 49-58, 2011.
[22] M. Brenes, A. García, P. García, J. J. Rios, and A. Garrido, ”Phenolic compounds in Spanish olive oils,” Journal of Agricultural and Food Chemistry, vol. 47, pp. 3535-3540, 1999.
[23] A. Rozzi and F. Malpei, ”Treatment and disposal of olive mill effluents,” International biodeterioration & biodegradation, vol. 38, pp. 135-144, 1996.
[24] W. Gernjak, M. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, et al., ”Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO 2 photocatalysis and solar photo-Fenton,” Solar Energy, vol. 77, pp. 567-572, 2004.
[25] A. Chiavola, G. Farabegoli, and E. Rolle, ”Combined biological and chemical-physical process for olive mill wastewater treatment,” Desalination and Water Treatment, vol. 23, pp. 135-140, 2010.
[26] E. Bettazzi, M. Morelli, S. Caffaz, C. Caretti, E. Azzari, and C. Lubello, ”Olive mill wastewater treatment: an experimental study,” Water science and technology, vol. 54, pp. 17-25, 2006.
[27] M. Kallel, C. Belaid, T. Mechichi, M. Ksibi, and B. Elleuch, ”Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron,” Chemical Engineering Journal, vol. 150, pp. 391-395, 2009.
[28] M. Yalılı Kılıç, T. Yonar, and K. Kestioğlu, ”Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes,” Environmental technology, vol. 34, pp. 1521-1531, 2013.
[29] C. Amor, M. S. Lucas, J. García, J. R. Dominguez, J. B. De Heredia, and J. A. Peres, ”Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process,” Journal of Environmental Science and Health, Part A, vol. 50, pp. 161-168, 2015.
[30] I. E. Kapellakis, K. P. Tsagarakis, and J. C. Crowther, ”Olive oil history, production and by-product management,” Reviews in Environmental Science and Bio/Technology, vol. 7, pp. 1-26, 2008.
[31] M. A. Miranda, F. Galindo, A. M. Amat, and A. Arques, ”Pyryliumsalt-photosensitised degradation of phenolic contaminants present in olive oil wastewaters with solar light: Part II. Benzoic acid derivatives,” Applied Catalysis B: Environmental, vol. 30, pp. 437-444, 2001.
[32] R. Riffaldi, R. Levi-Minzi, A. Saviozzi, G. Vanni, and A. Scagnozzi, ”Effect of the disposal of sludge from olive processing on some soil characteristics: laboratory experiments,” Water, Air, & Soil Pollution, vol. 69, pp. 257-264, 1993.
[33] L. Di Giovacchino, C. Basti, N. Costantini, G. Surricchio, M. Ferrante, and D. Lombardi, ”Effects of spreading olive vegetable water on soil cultivated with maize and grapevine,” Olivae, vol. 91, pp. 37-43, 2002.
[34] J. Sierra, E. Martı, G. Montserrat, R. Cruanas, and M. Garau, ”Characterisation and evolution of a soil affected by olive oil mill wastewater disposal,” Science of the Total Environment, vol. 279, pp. 207-214, 2001.
[35] E. Tsagaraki, H. Lazarides, and K. Petrotos, ”Olive mill wastewater treatment,” Utilization of By-products and Treatment ofWaste in the Food Industry, pp. 133-157, 2007.
[36] A. Eusébio, M. Mateus, L. Baeta-Hall, M. Sàágua, R. Tenreiro, E. Almeida-Vara, et al., ”Characterization of the microbial communities in jet-loop (JACTO) reactors during aerobic olive oil wastewater treatment,” International Biodeterioration & Biodegradation, vol. 59, pp. 226-233, 2007.
[37] A. Masion, A. Vilgé-Ritter, J. Rose, W. E. Stone, B. J. Teppen, D. Rybacki, et al., ”Coagulation-flocculation of natural organic matter with Al salts: Speciation andstructure of the aggregates,” Environmental Science & Technology, vol. 34, pp. 3242-3246, 2000.
[38] A. Vilgé-Ritter, A. Masion, T. Boulangé, D. Rybacki, and J.-Y. Bottero, ”Removal of natural organic matter by coagulation-flocculation: a pyrolysis-GC-MSstudy,” Environmental science & technology, vol. 33, pp. 3027-3032, 1999.
[39] M. Franceschi, A. Girou, A. Carro-Diaz, M. Maurette, and E. Puech-Costes, ”Optimisation of the coagulation–flocculation process of raw water by optimal design method,” Water research, vol. 36, pp. 3561-3572, 2002.
[40] D. Georgiou, A. Aivazidis, J. Hatiras, and K. Gimouhopoulos, ”Treatment of cotton textile wastewater using lime and ferrous sulfate,” Water Research, vol. 37, pp. 2248-2250, 2003.
[41] M. H. Al-Malack, N. S. Abuzaid, and A. H. El-Mubarak, ”Coagulation of polymeric wastewater discharged by a chemical factory,” Water Research, vol. 33, pp. 521-529, 1999.
[42] L. G. Torres, J. Jaimes, P. Mijaylova, E. Ramírez, and B. Jiménez, ”Coagulation-flocculation pretreatmentof high-load chemical-pharmaceutical industry wastewater: mixing aspects,” Water Science and technology, vol. 36, pp. 255-262, 1997.
[43] P. Canizares, F. Martinez, C. Saez, and M. A. Rodrigo, ”Treatment of actual metalworking wastewaters by coagulation combined with electrochemical oxidation,” International Journal of Environmental Engineering, vol. 1, pp. 238-255, 2009.
[44] A. Hafiz, H. El-Din, and A. Badawi, ”Chemical destabilization of oil-in-water emulsion by novel polymerized diethanolamines,” Journal of colloid and interface science, vol. 284, pp. 167-175, 2005.
[45] J. Bratby, Coagulation and flocculation in water and wastewater treatment: IWA publishing, 2006.
[46] E. Metcalf and E. Eddy, ”Wastewater engineering: treatment and reuse. McGrawHill,” Inc., New York, 2003.
[47] N. Prakash, V. Sockan, and P. Jayakaran, ”Waste water treatment by coagulation and flocculation,” International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 3, pp. 479-484, 2014.
[48] S. K. Dentel, M. M. Abu-Orf, and N. J. Griskowitz, Guidance manual for polymer selection in wastewater treatment plants: Water Environment Federation, 1993.
[49] J. Gregory, ”Stability and Flocculation of Colloidal Particles--Part 1,” Effluent and Water Treatment Journal, vol. 17, 1977.
[50] J. Bratby, Coagulation and flocculation in water and wastewater treatment: IWA publishing, 2016.
[51] A. Black and C.-l. Chen, ”Electrophoretic studies of coagulation and flocculation of river sediment suspensions with aluminum sulfate,” Journal (American Water Works Association), vol. 57, pp. 354-362, 1965.
[52] J. F. Ferguson and T. King, ”A model for aluminum phosphate precipitation,” Journal (Water Pollution Control Federation), pp. 646-658, 1977.
[53] A. Yazdanbakhsh, F. Mehdipour, A. Eslami, H. S. Maleksari, and F. Ghanbari, ”The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation,” Water Science and Technology, vol. 71, pp. 1097-1105, 2015.
[54] F. AlMubaddal, K. AlRumaihi, and A. Ajbar, ”Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant,” Journal of hazardous materials, vol. 161, pp. 431-438, 2009.
[55] H. M. Abdulla, E. M. Kamal, and A. H. Mohamed, ”Chromium removal from tannery wastewater using chemical and biological techniques aiming zero discharge of pollution.”
[56] E. S. Aktas, S. Imre, and L. Ersoy, ”Characterization and lime treatment ofolive mill wastewater,” Water Research, vol. 35, pp. 2336-2340, 2001.
[57] A. Volkova, L. Ivanova, and V. Yakovlev, ”Removal of protein and of suspended and ether-soluble substances from wastewaters by electrocoagulation,” Journal of Applied Chemistry ofthe Ussr, vol. 54, pp. 970-972, 1981.
[58] C. Tsai, S. Lin, Y. Shue, and P. Su, ”Electrolysis of soluble organic matter in leachate from landfills,” Water research, vol. 31, pp. 3073-3081, 1997.
[59] B. Belongia, P. Haworth, J. Baygents, and S. Raghavan, ”Treatment of alumina and silica chemical mechanical polishing waste by electrodecantation and electrocoagulation,” Journal of the Electrochemical Society, vol. 146, pp. 4124-4130, 1999.
[60] E. Nariyan, M. Sillanpää, and C. Wolkersdorfer, ”Electrocoagulation treatment of mine water from the deepest working European metal mine–performance, isotherm and kinetic studies,” Separation and Purification Technology, vol. 177, pp. 363-373, 2017.
[61] Z. Al-Qodah and M. Al-Shannag, ”Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review,” Separation Science and Technology, 2017.
[62] W. Pretorius, W. Johannes, and G. Lempert, ”Electrolytic iron flocculant production with a bipolar electrode in series arrangement,” WaterS. A., vol. 17, pp. 133-138, 1991.
[63] E. Hernández-Francisco, J. Peral, and L. Blanco-Jerez, ”Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes,” Journal of Water Process Engineering, vol. 19, pp. 96-100, 2017.
[64] L. Joffe and L. Knieper, ”Electrocoagulation,” Industrial Wastewater, pp. 20-24, 2000.
[65] J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, et al., ”Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches,” Desalination, vol. 404, pp. 1-21, 2017.
[66] M. Y. A. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, ”Electrocoagulation (EC)—science and applications,” Journal of hazardous materials, vol. 84, pp. 29-41, 2001.
[67] M. Pearse, ”Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry,” Minerals Engineering, vol. 16, pp. 103-108, 2003.
[68] G. B. Raju, M. T. Karuppiah, S. Latha, S. Parvathy, and S. Prabhakar, ”Treatment of wastewater from synthetic textile industry by electrocoagulation–electrooxidation,” Chemical Engineering Journal, vol. 144, pp. 51-58, 2008.
[69] I. Zongo, A. H. Maiga, J. Wéthé, G. Valentin, J.-P. Leclerc, G. Paternotte, et al., ”Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance,” Journal of Hazardous Materials, vol. 169, pp. 70-76, 2009.
[70] M. Malakootian, H. Mansoorian, and M. Moosazadeh, ”Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water,” Desalination, vol. 255, pp. 67-71, 2010.
[71] L. Cheng, ”Electrochemical method to remove fluorine from drinking water,” Water Supply, vol. 3, pp. 177-186, 1985.
[72] L. Ming, S. R. Yi, Z. J. Hua, B. Yuan, W. Lei, L. Ping, et al., ”Elimination of excess fluoride in potable water with coacervation by electrolysis using an aluminum anode,” Fluoride, vol. 20, pp. 54-63, 1987.
[73] G. Mouedhen, M. Feki, M. D. P. Wery, and H. Ayedi, ”Behavior of aluminum electrodes in electrocoagulation process,” Journal of hazardous materials, vol. 150, pp. 124-135, 2008.
[74] P. Cañizares, C. Jiménez, F. Martínez, M. A. Rodrigo, and C. Sáez, ”The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters,” Journal of Hazardous Materials, vol. 163, pp. 158-164, 2009.
[75] Ö. Hanay and H. Hasar, ”Effect of anions on removing Cu 2+, Mn 2+ and Zn 2+ in electrocoagulation process using aluminum electrodes,” Journal of hazardous materials, vol. 189, pp. 572-576, 2011.
[76] H. Inan, A. Dimoglo, H. Şimşek, and M. Karpuzcu, ”Olive oil mill wastewater treatment by means of electro-coagulation,” Separation and purification technology, vol. 36, pp. 23-31, 2004.
[77] S. A. Abdel-Gawad, A. M. Baraka, K. A. Omran, and M. M. Mokhtar, ”Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes,” International Journal of Electrochemical Science, vol. 7, pp. 6654-6665, 2012.
[78] P. K. Holt, G. W. Barton, M. Wark, and C. A. Mitchell, ”A quantitative comparison between chemical dosing and electrocoagulation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 211, pp. 233-248, 2002.
[79] M. Nasrullah, L. Singh, and Z. A. Wahida, ”Treatment of sewage by electrocoagulation and the effect of high current density,” Energy Environ Eng J, vol. 1, 2012.
[80] A. Golder, A. Samanta, and S. Ray, ”Removalof Cr 3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations,” Journal of Hazardous Materials, vol. 141, pp. 653-661, 2007.
[81] D. Ghosh, C. Medhi, and M. Purkait, ”Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections,” Chemosphere, vol. 73, pp. 1393-1400, 2008.
[82] C.-T. Wang, W.-L. Chou, and Y.-M. Kuo, ”Removal of COD from laundry wastewater by electrocoagulation/electroflotation,” Journal of hazardousmaterials, vol. 164, pp. 81-86, 2009.
[83] M. Asselin, P. Drogui, S. K. Brar, H. Benmoussa, and J.-F. Blais, ”Organics removal in oily bilgewater by electrocoagulation process,” Journal of Hazardous Materials, vol. 151, pp. 446-455, 2008.
[84] M. Bayramoglu, M. Eyvaz, and M. Kobya, ”Treatment of the textile wastewater by electrocoagulation: economical evaluation,” Chemical Engineering Journal, vol. 128, pp. 155-161, 2007.
[85] T. Naohide, M. Yukio, Y. Masataka, W. Shin-Ichi, T. Sahori, S. Zyun, et al., ”Application of solid polymer electrolyte for treatment of water coloured by dyestuffs,” Treatment of Orange II. Mizu Kankyo Gakkaishi, vol. 21, pp. 47-50, 1998.
[86] H. Liu, X. Zhao, and J. Qu, ”Electrocoagulation in water treatment. Comninellis, C and Chen, G.(eds) From: Electrochemistry for the environment, Chapter 10,” ed: Springer, 2010.
[87] N. Khosla, S. Venkatachalam, and P. Somasundaran, ”Pulsed electrogeneration of bubbles for electroflotation,” Journal of Applied Electrochemistry, vol. 21, pp. 986-990, 1991.
[88] Y. Esfandyari, Y. Mahdavi, M. Seyedsalehi, M. Hoseini, G. H. Safari, M. G. Ghozikali, et al., ”Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes,” Environmental Science and Pollution Research, vol. 22, pp. 6288-6297, 2015.
[89] A. E. Yilmaz, R. Boncukcuoğlu, M. M. Kocakerim, M. T. Yilmaz, and C. Paluluoğlu, ”Boron removal from geothermal waters by electrocoagulation,” Journal of hazardous materials, vol. 153, pp. 146-151, 2008.
[90] R. Katal and H. Pahlavanzadeh, ”Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater,” Desalination, vol. 265, pp. 199-205, 2011.
[91] S. Vasudevan, J. Lakshmi, J. Jayaraj, and G. Sozhan, ”Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes,” Journal of Hazardous Materials, vol. 164, pp. 1480-1486, 2009.
[92] G. Chen, ”Electrochemical technologies in wastewater treatment,” Separation and purification Technology, vol. 38, pp. 11-41, 2004.
[93] https://en.wikipedia.org/wiki/Aluminium_sulfate. (2009). Aluminium sulfate.
[94] W. E. Federation and A. P. H. Association, ”Standard methods for the examination of water and wastewater,” American Public Health Association (APHA): Washington, DC, USA, 2005.
[95] T. Rakić, I. Kasagić-Vujanović, M. Jovanović, B. Jančić-Stojanović, and D. Ivanović, ”Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities,” Analytical Letters, vol. 47, pp. 1334-1347, 2014.
[96] M. Schuhmacher, M. Nadal, and J. L. Domingo, ”Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel,” Chemosphere, vol. 74, pp. 1502-1508, 2009.
[97] T. A. Demir, B. Işıklı, S. M. Ürer, A. Berber, T. Akar, M. Canbek, et al., ”Nickel exposure and its effects,” Biometals, vol. 18, pp. 7-13, 2005.
[98] J. Paz‐Ferreiro and S. Fu, ”Biological indices for soil quality evaluation: perspectives and limitations,” Land Degradation & Development, vol. 27, pp. 14-25, 2016.
[99] Y. Bayhan, S. Yapici, B. Kocaman, A. Nuhoglu, and A. Cakici, ”The effects of cement dust on some soil characteristics,” Fresenius Environmental Bulletin, vol. 11, pp. 1030-1033, 2002.
[100] K. Semhi, S. Al-Khirbash, O. Abdalla, T. Khan, J. Duplay, S. Chaudhuri, et al., ”Dry atmospheric contribution to the plant–soil system around a cement factory: spatial variations and sources—a case study from Oman,” Water, air, and soil pollution, vol. 205, p. 343, 2010.
[101] F. Caravaca, Z. Lozano, G. Rodríguez‐Caballero, and A. Roldán, ”Spatial Shifts in Soil Microbial Activity and Degradation of Pasture Cover Caused by Prolonged Exposure to Cement Dust,” Land Degradation & Development, vol. 28, pp. 1329-1335, 2017.
[102] V. Rawat and R. Katiyar, ”A review on the effects of cement dust on vegetation,” International Journal of Scientific and Innovative Research Studies, vol. 3, pp. 39-45, 2015.
[103] M. Addo, E. Darko, C. Gordon, B. Nyarko, J. Gbadago, E. Nyarko, et al., ”Evaluation of heavy metals contamination of soil and vegetation in the vicinity of a cement factory in the Volta Region, Ghana,” 2012.
[104] X. Liu, X.-M. Li, Q. Yang, X. Yue, T.-T. Shen, W. Zheng, et al., ”Landfill leachate pretreatment by coagulation–flocculation process using iron-based coagulants: optimization by response surface methodology,” Chemical Engineering Journal, vol. 200, pp. 39-51, 2012.
[105] M. Moradi and F. Ghanbari, ”Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: biodegradability improvement,” Journal of Water Process Engineering, vol. 4, pp. 67-73, 2014.
[106] P. T. Spicer and S. E. Pratsinis, ”Shear-induced flocculation: the evolution of floc structure and the shape ofthe size distribution at steady state,” Water Research, vol. 30, pp. 1049-1056, 1996.
[107] A. W. W. Association, ”Operational control of coagulation and filtration processes,” in AWWA manual of water supply practices. vol. 37, ed: AWWA, 1992.
[108] W. K. Lafi, M. Al-Anber, Z. A. Al-Anber, M. Al-shannag, and A. Khalil, ”Coagulation and advanced oxidation processes in the treatment of olive mill wastewater (OMW),” Desalination and water treatment, vol. 24, pp. 251-256, 2010.
[109] E. D. Dohare and T. Sisodia, ”Applications of Electrocoagulation in treatment of Industrial Wastewater: A Review,” 2014.
[110] G. Sposito, The environmental chemistry of aluminum: CRC Press, 1995.
[111] T. Picard, G. Cathalifaud-Feuillade, M. Mazet, and C. Vandensteendam, ”Cathodic dissolution in the electrocoagulation process using aluminium electrodes,” Journal of Environmental Monitoring, vol. 2, pp. 77-80, 2000.
[112] R. V. Thomann, ”Systems analysis and water quality management,” New York, 1972.
[113] S. Rohrsetzer, I. Paszli, and F. Csempesz, ”Colloid stability of electrostatically stabilized sols,” Colloid and Polymer Science, vol. 276, pp. 260-266, 1998.
[114] K. Pelendridou, M. K. Michailides, D. P. Zagklis, A. G. Tekerlekopoulou, C. A. Paraskeva, and D. V. Vayenas, ”Treatment of olive mill wastewater using a coagulation–flocculation process either as a single step or as post‐treatment after aerobic biological treatment,” Journal of Chemical Technology and Biotechnology, vol. 89, pp. 1866-1874, 2014.
[115] F. Hanafi, O. Assobhei, and M. Mountadar, ”Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation,” Journal of hazardous materials, vol. 174, pp. 807-812, 2010.
[116] M. Tir and N. Moulai-Mostefa, ”Optimization of oil removal from oily wastewater by electrocoagulation using response surface method,” Journal of hazardous materials, vol. 158, pp. 107-115, 2008.
[117] F. Ozyonar and B. Karagozoglu, ”Operating cost analysis and treatment of domestic wastewater by electrocoagulation usingaluminum electrodes,” Pol. J. Environ. Stud, vol. 20, p. 173, 2011.
[118] F. Shen, X. Chen, P. Gao, and G. Chen, ”Electrochemical removal of fluoride ions from industrial wastewater,” Chemical Engineering Science, vol. 58, pp. 987-993, 2003.
.