Search In this Thesis
   Search In this Thesis  
العنوان
Design of High Performance
Analog to Digital Converter in Deep Sub-micron COMS Process\
المؤلف
Ibrahim,Mohamed Mohsen Mohamed
هيئة الاعداد
باحث / محمد محسن محمد ابراهيم يونس
مشرف / مجدى محمود محمد ابراهيم
مشرف / محمد امين دسوقى
مناقش / عبد الحليم محمود شوشة
مناقش / هانى فكرى رجائى
تاريخ النشر
2012.
عدد الصفحات
239p.:
اللغة
الإنجليزية
الدرجة
ماجستير
التخصص
الهندسة الكهربائية والالكترونية
تاريخ الإجازة
1/1/2012
مكان الإجازة
جامعة عين شمس - كلية الهندسة - كهربة اتصالات
الفهرس
Only 14 pages are availabe for public view

from 271

from 271

Abstract

The continuous effort to improve the performance of analog-to-digital
converters (ADC) bas led the development of several precision techniques
for ADCs. The primary objective of those precision techniques is to allevi-
ate the accuracy constraints such as capacitor mismatch, charge injection,
finite op amp DC gain and comparator offset. In the early years, the error
correcting techniques like the ratio independent, reference refreshing, capacitor
error-averaging, on-chip capacitor trimming and analog calibration
were applied in the analog domain. The main drawback of these analog
precision techniques is the complexity of circuit implementation. The digitally
controlled self calibration and digital-domain calibration techniques
were introduced to eliminate the disadvantage of the analog precision techniques
but developed for successive approximation and flash type ADCs,
respectively. Reduced feature size combined with lower power supply voltage
are the key technology drivers resulting in reduced cost, higher speed
and lower power consumption of digitally calibrated ADCs.
This thesis presents a 1.0-V 13-bit 20S-MSample/s time-interleaved
pipelined analog-to-digital converter (ADC) with a 9S-dB spurious free dynamicrange
(SFDR), 7S.S-dB signal-to-noise-plus-distortion ratio (SNDR)
over the full Nyquist band and a total power consumption of 71mW. This performance is enabled by digital background calibration of both capacitor
mismatch in the multi-bit DAC and finite inter-stage gain errors. Msequence
characteristics was used for the generation of the multiple orthogonal
codes needed in the calibration engine. Also, a simple design for the
dithered re-quantizer which precedes calibration is adopted. Digital calibration
achieves an improvement of better than 23-dB in SFDR and I3-dB
in SNDR.